• Deformed Steel Bar HRB335 Construction Rebar System 1
  • Deformed Steel Bar HRB335 Construction Rebar System 2
  • Deformed Steel Bar HRB335 Construction Rebar System 3
Deformed Steel Bar HRB335 Construction Rebar

Deformed Steel Bar HRB335 Construction Rebar

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT or LC
Min Order Qty:
30 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Carbon Steel,Spring Steel,Bearing Steel,Gear Steel,Deformed Steel,Stainless Steel,Alloy Steel
Shape:
Steel Coil,Steel Sheet,Steel Wire Rod,Steel Flat Bar,Steel Square Bar,Steel Angle,Steel Round Bar,Steel Billets
Technique:
Hot Rolled,Cold Rolled,Cold Drawn,ERW,Forged,Saw,Extruded,EFW,Spring
Surface Treatment:
Galvanized,Coated,Copper Coated,Color Coated,Oiled,Dry,Chromed Passivation,Polished,Bright,Black,PVDF Coated
Certification:
UL,ISO,SGS,BV,IBR,RoHS,CE,API,BSI

Product information:

Commodity:High quality hot rolled ribbed bar, Steel rebar, Deformed bars, Deform rebar
Standard & Grade:GB1499-98 : HRB335,HRB400,HRB500
BS4449-1997 : GR460B,GRB500B
CAN/CSA-G30.18-M92 : 400W
AS/NZS4671-2001 : GR300E, GR500E
JIS G3112-2010 : SD345,SD390,SD490
ASTM A615 : Gr.40, Gr.60
DIN488-1984 : BST500
KS D 3504 : SD400
Diameter:6mm - 50mm
Length:6m,9m,12m
Packing:Bundle packing
Origin:China
Application:Construction,Road,Machinery processing,Welding fields.
Delivery time:10-25 days
Shipment:By bulk vessel or Container
Documents:Mill Test Certificate,Commercial Invoice,Packing List,Certificate of Origin

Product show

.jpg

Workshop show

Deformed Steel Bar HRB335 Construction Rebar

Shipping 

1. FedEx/DHL/UPS/TNT for samples, Door-to-Door;

2. By Air or by Sea for batch goods, for FCL; Airport/ Port receiving;

3. Customers specifying freight forwarders or negotiable shipping methods!

Delivery Time: 3-7 days for samples; 5-25 days for batch goods.

Payment Terms

1.Payment: T/T, L/C, Western Union, MoneyGram,PayPal; 30% deposits; 70% balance before delivery.

2.MOQ: 1pcs

3.Warranty : 3 years

4.Package Informations: 1) EXPORT, In 20 feet (GW 25 ton) or 40 feet Container (GW 25 ton)

                                        2)as customer's requirement


Why choose us? 

(1) The leading exporter in China special steel industry.       

(2) Large stocks for various sizes, fast delivery date.       

(3) Good business relationship with China famous factories.       

(4) More than 7 years steel exporting experience.       

(5) Good after-sales service guarantee. 


Screw steel is a steel bar with ribs on the surface, also known as ribbed bars, usually with 2 longitudinal ribs and transverse ribs evenly distributed along the longitudinal direction. The transverse rib shape is helical, herringbone, crescent 3. Nominal diameter of mm. Nominal diameter equal to the nominal diameter of the circular steel bars of equal cross section. The nominal diameter of the steel bar is 8-50 mm. The recommended diameter is 8, 12, 16, 20, 25, 32, 40 mm. Tensile stress in concrete with ribbed steel bars. Ribbed steel bar because of the role of ribs, and concrete have a larger bond capacity, and thus can better withstand the role of external forces. Ribbed steel bars are widely used in various building structures, especially large, heavy, light, thin wall and high rise building structures.

Thread steel is widely used in building, bridge, road and other civil engineering construction. Highways, railways, bridges, culverts, tunnels, flood control, dam etc. utilities to large, the small building foundation, beams, columns, a wall, a slab, rebar is indispensable structural materials.

This is the mechanical properties of thread steel grade and size specifications of the method.

H, R, B are hot rolling (Hotrolled), ribbed (Ribbed), steel (Bars) three words of the first letter in english.

HRB behind the figures, said its production level for the mechanical properties of materials, specific value is the material yield strength sigma S (sigma 91). Such as:

HRB335, which indicates that the yield strength is 335MPa of the rebar.

 

Q: How does special steel perform in terms of corrosion resistance in acidic environments?
Special steel, such as stainless steel, exhibits excellent corrosion resistance in acidic environments due to its high chromium content. The chromium forms a protective oxide layer on the surface of the steel, preventing the corrosive attack of acids. This makes special steel a reliable choice for applications where exposure to acidic environments is a concern.
Q: What are the different magnetic grades of special steel?
There are several different magnetic grades of special steel that are commonly used in various applications. Some of the most common magnetic grades include: 1. Soft Magnetic Materials: These grades of special steel are designed to have high magnetic permeability and low coercivity. They are used in applications where a high magnetic induction is required, such as in transformers, electric motors, and magnetic cores for electrical devices. 2. Martensitic Stainless Steels: These grades of special steel have a high magnetic permeability and are magnetic in their hardened state. They are commonly used in applications such as cutlery, tools, and certain automotive components. 3. Ferritic Stainless Steels: These grades of special steel have a lower magnetic permeability compared to martensitic stainless steels, but they are still magnetic. They are commonly used in applications such as automotive exhaust systems, decorative trim, and appliances. 4. Duplex Stainless Steels: These grades of special steel possess a mixed microstructure of austenite and ferrite, resulting in a magnetic response. They are known for their high corrosion resistance and are used in applications where both strength and corrosion resistance are required, such as in chemical processing equipment and offshore oil and gas platforms. 5. Austenitic Stainless Steels: These grades of special steel are non-magnetic in their annealed state. However, they can exhibit slight magnetism when cold worked or if they contain certain alloying elements. Austenitic stainless steels are widely used in various applications, such as in food processing equipment, architectural structures, and medical devices. It's important to note that the presence or absence of magnetism in special steel grades can vary depending on factors such as composition, heat treatment, and processing. Therefore, it is crucial to consider the specific requirements of a particular application when selecting the appropriate magnetic grade of special steel.
Q: What are the different welding methods used for special steel?
There are several welding methods that can be used for special steel, depending on the specific requirements of the project. Some of the commonly used welding methods for special steel include: 1. Gas Metal Arc Welding (GMAW): Also known as MIG welding, this method uses a consumable electrode and a shielding gas to protect the weld from atmospheric contamination. GMAW is ideal for welding special steel as it provides high-quality, clean welds with minimal spatter. 2. Gas Tungsten Arc Welding (GTAW): Also known as TIG welding, this method uses a non-consumable tungsten electrode and a shielding gas to protect the weld. GTAW is often used for special steel as it allows for precise control over the welding process, resulting in high-quality, defect-free welds. 3. Shielded Metal Arc Welding (SMAW): Also known as stick welding, this method uses a consumable electrode coated in flux to protect the weld. SMAW is commonly used for special steel as it is a versatile and portable method that can be used in various positions and environments. 4. Flux-cored Arc Welding (FCAW): This method uses a tubular electrode filled with flux to protect the weld. FCAW is often used for special steel as it provides high deposition rates and deep penetration, making it suitable for thicker materials. 5. Submerged Arc Welding (SAW): This method uses a continuously fed wire electrode and a granular flux that is applied around the weld. SAW is commonly used for special steel as it can produce high-quality, high-integrity welds in thick sections. It is important to note that the selection of the appropriate welding method for special steel depends on various factors such as the type and thickness of the steel, the desired weld quality, and the specific application requirements. Therefore, it is recommended to consult with welding professionals or engineers to determine the most suitable method for a particular project involving special steel.
Q: What are the different surface treatments applied to special steel?
Enhancing the properties and improving the performance of special steel can be achieved through the application of different surface treatments. Commonly used treatments include: 1. Utilizing heat treatment involves subjecting the steel to specific temperatures and controlling the cooling process. This treatment enhances the steel's hardness, strength, toughness, wear resistance, and corrosion resistance. 2. Coating the surface of special steel with a protective layer is another frequently used surface treatment. Electroplating, hot-dip galvanizing, and powder coating are some methods employed. Coatings provide added corrosion resistance, enhance the appearance of the steel, and prolong its lifespan. 3. Nitriding is a process that diffuses nitrogen into the steel's surface at high temperatures. This forms a tough outer layer, improving wear resistance and fatigue strength while maintaining core toughness. 4. Shot peening is a mechanical treatment that involves bombarding the steel surface with small spherical particles made of steel or ceramic. This induces compressive stresses in the surface layer, improving fatigue strength and resistance to stress corrosion cracking. 5. Passivation is a chemical treatment used to eliminate impurities and contaminants from the steel's surface, typically by immersing it in an acid solution. This process restores the natural corrosion resistance of stainless steel by forming a protective oxide layer. 6. Electro-polishing is an electrochemical process that removes a thin layer of material from the steel's surface. It improves surface finish, eliminates micro-roughness, and enhances corrosion resistance. These are just a few examples of the various surface treatments applicable to special steel. The choice of treatment depends on the specific requirements of the application and the desired properties of the steel.
Q: What are the physical properties of special steel?
Compared to regular steel, special steel possesses unique physical properties. These properties can vary depending on the specific composition and processing techniques employed. However, special steel typically exhibits high strength, hardness, and durability. Its design often aims to withstand extreme conditions, including high temperatures, pressure, and corrosive environments. Additionally, special steel may display exceptional wear resistance, making it suitable for applications involving heavy machinery or cutting tools. Moreover, it can possess superior electrical and thermal conductivity, along with favorable magnetic properties. In conclusion, the physical properties of special steel render it highly versatile and valuable across various industries, such as automotive, aerospace, construction, and energy.
Q: How does special steel resist thermal fatigue?
Due to its distinctive composition and properties, special steel possesses the ability to withstand thermal fatigue. When a material experiences repeated cycles of heating and cooling, cracks form and ultimately lead to material failure. Special steel, on the other hand, is specifically engineered to endure extreme temperature changes. It possesses a high melting point and exceptional thermal conductivity, enabling efficient heat dissipation and minimization of thermal stress. Furthermore, the steel is often alloyed with elements like chromium, nickel, and molybdenum, which augment its resistance to thermal fatigue. The alloying elements within special steel create a protective layer that acts as a barrier against oxidation and corrosion. This safeguard prevents crack formation and enhances the steel's capacity to withstand thermal cycling. Additionally, the alloying elements enhance the steel's structural integrity by encouraging the formation of finely dispersed and evenly distributed microstructures. This, in turn, amplifies the steel's toughness and crack resistance. Moreover, special steel undergoes various heat treatment processes to further enhance its resistance to thermal fatigue. These processes involve controlled cycles of heating and cooling, refining the steel's microstructure and rendering it more resistant to deformation and cracking. The heat treatment also aids in alleviating any residual stresses that may have been induced during the manufacturing process. In conclusion, special steel resists thermal fatigue due to its distinctive composition, alloying elements, and heat treatment processes. Its high melting point, exceptional thermal conductivity, and protective layer against oxidation and corrosion make it highly resilient to thermal cycling. The refined microstructure and alleviated residual stresses further strengthen its ability to endure repeated cycles of heating and cooling without experiencing failure.
Q: Can special steel be used in the production of surgical instruments?
Yes, special steel can be used in the production of surgical instruments. Special steel alloys, such as stainless steel, are commonly used due to their desirable properties like corrosion resistance, strength, and their ability to be easily sterilized. These characteristics make special steel an ideal material for surgical instruments that require high precision and durability.
Q: How does special steel contribute to the manufacturing of molds and dies?
Special steel plays a crucial role in the manufacturing of molds and dies. Molds and dies are essential tools used in various industries, such as automotive, aerospace, and electronics, for shaping and forming materials into desired shapes and sizes. These tools need to be durable, resistant to wear and tear, and capable of withstanding high temperatures and pressures. Special steel, also known as tool steel, possesses unique properties that make it an ideal material for molds and dies. Firstly, it has a high hardness, which allows the tools to maintain their shape and surface integrity even when subjected to extensive use and repetitive impacts. This hardness also helps in achieving precision and accuracy in the final product. Additionally, special steel has excellent wear resistance, which is essential as molds and dies come into contact with various materials during the manufacturing process. The resistance to wear ensures that the tools have a longer lifespan, reducing the need for frequent replacements and minimizing production downtime. Moreover, special steel has good toughness, meaning it can absorb and withstand high impact forces without fracturing or breaking. This property is crucial in molds and dies as they often undergo significant stress during the manufacturing process, especially when dealing with materials that require high pressure or extreme temperatures. Special steel is also known for its high heat resistance, enabling molds and dies to withstand the elevated temperatures used in certain manufacturing processes, such as injection molding or metal forging. This heat resistance prevents the tools from warping or losing their shape, ensuring consistent and accurate production. Furthermore, special steel can be easily machined and shaped, allowing manufacturers to create complex and intricate designs for molds and dies. This versatility is vital as different industries require unique tool designs to meet their specific manufacturing needs. In conclusion, special steel is an essential material for the manufacturing of molds and dies due to its high hardness, wear resistance, toughness, heat resistance, and machinability. Its unique properties contribute to the durability, precision, and efficiency of molds and dies, ultimately enhancing the quality and productivity of various manufacturing processes.
Q: What are the properties of corrosion-resistant stainless tool steel?
Corrosion-resistant stainless tool steel possesses several properties that make it highly suitable for various applications. Firstly, it exhibits exceptional resistance to corrosion, even in harsh environments, due to the presence of a high percentage of chromium in its composition. This resistance helps prevent the formation of rust, stains, or pitting, ensuring durability and longevity. Additionally, this type of steel maintains its mechanical strength and hardness at elevated temperatures, making it ideal for tools and equipment subjected to high heat or wear. Furthermore, corrosion-resistant stainless tool steel offers excellent machinability, allowing for ease of shaping, cutting, and forming. Its combination of corrosion resistance, strength, and machinability makes it a popular choice for various industries, including manufacturing, construction, and automotive.
Q: How is ultra-high-strength steel used in the construction industry?
Ultra-high-strength steel is used in the construction industry for various applications. It is commonly used in the construction of high-rise buildings, bridges, and other structures that require high load-bearing capacity and resistance to extreme conditions. The unique properties of ultra-high-strength steel, including its exceptional strength and durability, allow for the creation of lighter and more efficient structures. This steel is often used in critical components such as beams, columns, and trusses, enabling the construction of taller and more complex structures with enhanced safety and longevity.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords