• Deformed Steel Bar HRB500 Construction Rebar System 1
  • Deformed Steel Bar HRB500 Construction Rebar System 2
  • Deformed Steel Bar HRB500 Construction Rebar System 3
Deformed Steel Bar HRB500 Construction Rebar

Deformed Steel Bar HRB500 Construction Rebar

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
30 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Carbon Steel,Spring Steel,Bearing Steel,Gear Steel,Deformed Steel,Stainless Steel,Alloy Steel
Shape:
Steel Coil,Steel Sheet,Steel Wire Rod,Steel Flat Bar,Steel Square Bar,Steel Angle,Steel Round Bar,Steel Billets
Technique:
Hot Rolled,Cold Rolled,Cold Drawn,ERW,Forged,Saw,Extruded,EFW,Spring
Surface Treatment:
Galvanized,Coated,Copper Coated,Color Coated,Oiled,Dry,Chromed Passivation,Polished,Bright,Black,PVDF Coated
Certification:
UL,ISO,SGS,BV,IBR,RoHS,CE,API,BSI

Product information:

Commodity:High quality hot rolled ribbed bar, Steel rebar, Deformed bars, Deform rebar
Standard & Grade:GB1499-98 : HRB335,HRB400,HRB500
BS4449-1997 : GR460B,GRB500B
CAN/CSA-G30.18-M92 : 400W
AS/NZS4671-2001 : GR300E, GR500E
JIS G3112-2010 : SD345,SD390,SD490
ASTM A615 : Gr.40, Gr.60
DIN488-1984 : BST500
KS D 3504 : SD400
Diameter:6mm - 50mm
Length:6m,9m,12m
Packing:Bundle packing
Origin:China
Application:Construction,Road,Machinery processing,Welding fields.
Delivery time:10-25 days
Shipment:By bulk vessel or Container
Documents:Mill Test Certificate,Commercial Invoice,Packing List,Certificate of Origin

Product show

.jpg

Workshop show

Deformed Steel Bar HRB500 Construction Rebar

Shipping 

1. FedEx/DHL/UPS/TNT for samples, Door-to-Door;

2. By Air or by Sea for batch goods, for FCL; Airport/ Port receiving;

3. Customers specifying freight forwarders or negotiable shipping methods!

Delivery Time: 3-7 days for samples; 5-25 days for batch goods.

Payment Terms

1.Payment: T/T, L/C, Western Union, MoneyGram,PayPal; 30% deposits; 70% balance before delivery.

2.MOQ: 1pcs

3.Warranty : 3 years

4.Package Informations: 1) EXPORT, In 20 feet (GW 25 ton) or 40 feet Container (GW 25 ton)

                                        2)as customer's requirement


Why choose us? 

(1) The leading exporter in China special steel industry.       

(2) Large stocks for various sizes, fast delivery date.       

(3) Good business relationship with China famous factories.       

(4) More than 7 years steel exporting experience.       

(5) Good after-sales service guarantee. 


Q:How does special steel contribute to the ductility of products?
Special steel contributes to the ductility of products through its unique composition and manufacturing processes. Ductility refers to a material's ability to deform under stress without fracturing or breaking. In the case of special steel, its composition includes certain alloying elements that enhance its ductility. One way special steel contributes to ductility is by reducing the presence of impurities. Special steel is produced with strict quality control measures, ensuring that impurities such as sulfur and phosphorus are kept at low levels. These impurities can cause brittleness in steel, reducing its ductility. By minimizing their presence, special steel maintains its ductile properties, allowing it to deform without failure. Furthermore, special steel often contains specific alloying elements like nickel, chromium, and molybdenum. These alloying elements play a crucial role in enhancing ductility. For instance, nickel improves the toughness and ductility of steel by increasing its ability to absorb energy before fracture. Chromium, on the other hand, enhances resistance to corrosion and oxidation, thereby preserving the ductility of the steel. The manufacturing processes used to produce special steel also contribute to its ductility. Precise temperature control during the heat treatment of special steel can optimize the microstructure, resulting in improved ductility. Additionally, special steel can undergo various forming processes, such as hot or cold rolling, which further refine its microstructure and enhance its ductility. Overall, special steel's unique composition, low impurity levels, and specific alloying elements, combined with precise manufacturing processes, contribute significantly to its ductility. This makes it an excellent choice for products that require deformation without failure, such as automotive components, machinery parts, and structural applications.
Q:How does special steel contribute to the manufacturing of springs for automotive applications?
Special steel plays a crucial role in the manufacturing of springs for automotive applications due to its unique properties and characteristics. Springs are essential components in automobiles as they provide the necessary suspension and shock absorption, ensuring a smooth and comfortable ride. One of the key advantages of special steel in spring manufacturing is its high strength and durability. Springs are subject to constant stress and repetitive loading, and special steel, with its exceptional strength, can withstand these forces without deforming or breaking. This property ensures that the springs can function reliably and maintain their shape and performance over extended periods of use. Additionally, special steel offers excellent fatigue resistance, which is vital for springs in automotive applications. Fatigue occurs when a material weakens and eventually fails after repeated loading and unloading cycles. Special steel is specifically designed to withstand fatigue, allowing the springs to endure the constant pressure and stress without experiencing premature failure. Moreover, special steel provides superior corrosion resistance, which is particularly important for automotive springs. Cars are exposed to various environmental elements, including moisture, road salt, and chemicals, which can lead to corrosion and deterioration of the springs. By using special steel with enhanced corrosion resistance, manufacturers can ensure that the springs have a longer lifespan and maintain their performance even in harsh conditions. Furthermore, special steel offers versatility in terms of its composition and properties. Manufacturers can choose from a wide range of special steel alloys, each with its own unique characteristics, to meet specific requirements. For example, some alloys offer greater elasticity, allowing the springs to flex and absorb shocks more effectively. Others provide higher hardness, enhancing the springs' load-bearing capacity. This flexibility in material selection empowers manufacturers to design and produce springs that are tailored to the specific needs of automotive applications. In conclusion, special steel significantly contributes to the manufacturing of springs for automotive applications by providing high strength, durability, fatigue resistance, corrosion resistance, and versatility. These properties enable the production of reliable, long-lasting springs that ensure optimal suspension, shock absorption, and overall performance in vehicles.
Q:What are the different surface hardening methods used for special steel?
Special steel can be enhanced in hardness and wear resistance through various surface hardening methods. These techniques are employed to cater to specific applications. Some commonly utilized methods for surface hardening special steel are as follows: 1. Carburizing: By introducing carbon into the steel's surface via heating it in a carbon-rich environment, such as a carbon-containing gas or liquid, carburizing is performed. The steel absorbs the carbon, resulting in a high-carbon layer on the surface. This process enhances the steel's hardness and wear resistance, making it suitable for applications demanding strength and durability. 2. Nitriding: Nitriding involves introducing nitrogen into the steel's surface. This is achieved by heating the steel in an atmosphere of ammonia gas. The nitrogen diffuses into the steel, forming a nitride layer on the surface. Nitrided steel exhibits increased hardness, improved wear resistance, and enhanced fatigue strength. It is commonly used in applications requiring high surface hardness, like gears, bearings, and tools. 3. Induction hardening: Induction hardening is a localized surface hardening method that entails heating specific areas of the steel using electromagnetic induction. The heated regions are then rapidly quenched, resulting in a hardened surface layer. Induction hardening is employed for components demanding high surface hardness, such as shafts, gears, and camshafts. It provides precise control over the hardened area, leading to improved wear resistance and fatigue strength. 4. Flame hardening: Flame hardening involves heating the steel surface using a high-temperature flame and quickly quenching it. This process creates a hard surface layer while leaving the core of the steel relatively unchanged. Flame hardening is commonly used for large and intricately shaped components, including axles, crankshafts, and machine tool slides. 5. Laser hardening: Laser hardening is a precise and localized surface hardening method that utilizes a high-energy laser beam to heat and melt the steel's surface. By moving the laser beam across the surface, a hardened layer is formed. Laser hardening provides precise control over the hardened area, resulting in improved wear resistance and fatigue strength. It is commonly applied to small and intricate components, such as cutting tools, molds, and dies. These are merely a few examples of the surface hardening methods frequently employed for special steel. Each method offers distinct advantages and is selected based on the specific requirements of the application. By utilizing these surface hardening techniques, special steel can be customized to meet the needs of various industries, including automotive, aerospace, and manufacturing.
Q:What are the environmental impacts of using special steel?
The use of special steel can have several environmental impacts. Firstly, the production of special steel involves the extraction of raw materials such as iron ore and coal, which can lead to deforestation, habitat destruction, and loss of biodiversity. The mining process can also result in the release of pollutants into the air, soil, and water, contributing to air and water pollution. Another environmental impact of special steel production is the emission of greenhouse gases, particularly carbon dioxide (CO2), during the manufacturing process. The high temperatures required to melt and shape the steel, as well as the energy-intensive processes involved, result in significant CO2 emissions. These emissions contribute to climate change and global warming. Furthermore, the transportation of special steel can also have environmental consequences. The shipping and logistics involved in transporting the steel from production facilities to end-users can result in additional greenhouse gas emissions, air pollution, and fuel consumption. Additionally, the disposal of special steel products at the end of their lifecycle can pose environmental challenges. If not properly recycled or disposed of, steel products can end up in landfills, taking up valuable space and potentially leaching harmful substances into the environment. Despite these environmental impacts, it is important to note that special steel is often used in various industries due to its durability, strength, and resistance to corrosion. Efforts are being made to mitigate these impacts through the adoption of cleaner production methods, such as recycling and using renewable energy sources in the steel manufacturing process. Additionally, initiatives like carbon capture and storage are being explored to reduce greenhouse gas emissions from steel production. Overall, while the use of special steel provides numerous benefits, it is critical to balance these advantages with the need to minimize its environmental impacts through sustainable production and responsible disposal practices.
Q:How does surface treatment affect the performance of special steel?
Surface treatment can significantly impact the performance of special steel by enhancing its corrosion resistance, improving wear resistance, increasing hardness, and reducing friction. These treatments, such as coatings, plating, or heat treatments, can also provide additional benefits like improved aesthetics, increased durability, and better adhesion for subsequent processes. Overall, surface treatment plays a crucial role in maximizing the performance and lifespan of special steel in various applications.
Q:What properties make special steel unique?
Special steel, also referred to as alloy steel, possesses distinct characteristics that differentiate it from other forms of steel. Firstly, special steel stands out due to its remarkable strength and hardness. It is specifically designed to resist deformation, making it ideal for applications that demand robust materials. Whether in the construction, automotive, or aerospace sectors, special steel provides the necessary durability and reliability. Another noteworthy attribute of special steel is its exceptional ability to resist corrosion. By incorporating certain alloying elements like chromium, nickel, or molybdenum, this type of steel becomes highly resistant to rust and other forms of corrosion. Consequently, special steel finds extensive use in marine environments, chemical plants, and oil and gas industries where exposure to harsh conditions is prevalent. Moreover, special steel displays excellent heat resistance. It can endure high temperatures without compromising its strength or structure, rendering it suitable for use in extreme heat environments such as power generation or furnace components. This property allows special steel to be employed in critical situations where other materials may fail or deteriorate. Special steel is renowned for its versatility and adaptability as well. Through the incorporation of various alloying elements and heat treatment processes, it can be customized to meet the specific requirements of different industries. This flexibility enables the creation of specialized alloys with unique properties, such as enhanced machinability, wear resistance, or improved magnetic properties, catering to a wide range of applications. In conclusion, the exceptional strength and hardness, superior corrosion resistance, excellent heat resistance, and adaptability of special steel make it an invaluable material in numerous industries. It enables the development of innovative and reliable products that meet specific industry needs.
Q:What are the main advantages of using special steel in the automotive industry?
Special steel has several main advantages in the automotive industry. Firstly, it offers increased strength and durability, allowing for lighter weight components without compromising safety. This not only improves fuel efficiency but also enhances overall vehicle performance. Secondly, special steel has excellent corrosion resistance, ensuring a longer lifespan and reducing maintenance costs. Lastly, its versatility enables the production of complex shapes and designs, enabling manufacturers to create innovative and efficient automotive structures.
Q:Can special steel be used in the production of knives and blades?
Yes, special steel can indeed be used in the production of knives and blades. Special steels, such as stainless steel or high-carbon steel, possess properties like corrosion resistance, hardness, and toughness that make them ideal for manufacturing durable and high-performance knives and blades. These steels are often chosen for their ability to retain sharpness, withstand heavy use, and resist rust, ensuring the longevity and reliability of the knives and blades.
Q:Can special steel be used in railway applications?
Yes, special steel can be used in railway applications. Special steel, also known as alloy steel or high-strength steel, possesses unique properties that make it suitable for various demanding applications, including railways. Special steel offers superior strength, durability, and resistance to wear, making it ideal for railway components that are subjected to high loads, vibrations, and extreme conditions. In railway applications, special steel is commonly used for manufacturing rails, wheels, axles, and other critical components. Rails made from special steel can handle heavy train traffic and provide a smooth and stable ride while resisting wear and deformation. Special steel wheels and axles offer high strength and toughness, ensuring safe and reliable operation even under heavy loads and high-speed conditions. Additionally, special steel is often used in the construction of railway bridges, tunnels, and other infrastructure projects. Its exceptional strength and resistance to corrosion and fatigue make it suitable for supporting heavy trains and withstanding the environmental challenges of railway construction. Moreover, the use of special steel in railway applications can contribute to cost savings and efficiency improvements. Its high durability and resistance to wear reduce the need for frequent maintenance and replacement, leading to lower maintenance costs and extended service life for railway components. Overall, special steel provides the necessary strength, durability, and performance required for railway applications. Its unique properties make it an ideal choice for ensuring the safety, reliability, and efficiency of rail transportation systems.
Q:What are the requirements for special steel used in robotic applications?
Optimal performance and reliability of robotic applications necessitates special steel that meets specific key requirements. These requirements encompass: 1. Exceptional strength: The steel utilized in robotic applications must possess outstanding strength properties to endure the stresses and loads encountered during robotic operations. It should exhibit superior tensile and yield strength to ensure structural integrity and prevent failure when subjected to heavy loads. 2. Resistance to wear: The steel employed in robotic applications should demonstrate high resistance to wear, enabling it to withstand repetitive motions, sliding, and abrasive contact with different surfaces. This characteristic minimizes wear and tear, thereby extending the lifespan of robotic components. 3. Protection against corrosion: Robotic applications often involve exposure to diverse environments, including moisture, chemicals, and other corrosive agents. Consequently, the special steel employed must possess excellent corrosion resistance to prevent degradation and maintain optimal performance over time. 4. Toughness: Good toughness is essential for special steel, allowing it to absorb energy and resist fracture or cracking. This attribute is crucial to ensure that the steel can withstand sudden shocks or impacts without catastrophic failure, thereby enhancing the safety and reliability of the robotic system. 5. Machinability: Robotic components often necessitate intricate shapes and precise dimensions. Therefore, the special steel used must exhibit good machinability, enabling easy cutting, shaping, and forming without excessive tool wear or manufacturing difficulties. 6. Heat resistance: Some robotic applications involve exposure to high temperatures, such as in welding or metalworking processes. Hence, it is imperative for the special steel to possess good heat resistance, maintaining its mechanical properties and structural integrity even under elevated temperatures. 7. Magnetic properties: Certain robotic applications may require non-magnetic steel to prevent interference with electromagnetic sensors or systems. Consequently, special steel with low magnetic permeability is often preferred for such applications. By fulfilling these requirements, special steel employed in robotic applications can deliver the necessary strength, durability, and performance essential for efficient and reliable robotic operations across various industries, including manufacturing, healthcare, and exploration.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords