• Corrosion Resistance Hot Rolled Bearing Steel SAE 52100 System 1
  • Corrosion Resistance Hot Rolled Bearing Steel SAE 52100 System 2
  • Corrosion Resistance Hot Rolled Bearing Steel SAE 52100 System 3
Corrosion Resistance Hot Rolled Bearing Steel SAE 52100

Corrosion Resistance Hot Rolled Bearing Steel SAE 52100

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
500 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Size of 52100 Carbon Alloy Steel

Round bar

Diameter(mm)

Length (mm)

20~800

3000~9000

Plate

Thickness(mm) 

Width (mm)  

Length (mm)   

Max:800

Max:2200

Max:9000

The specification can be customized.

 Chemical Compositons

Grade

C

Si

Mn

P

S

Cr

Mo

Ni

GCr15

0.95-1.05

0.15-0.35

0.25-0.45

≤0.025

≤0.025

1.40-1.65

≤0.10

≤0.30

E52100

0.93-1.05

0.15-0.35

0.25-0.45

≤0.025

≤0.015

1.35-1.60

≤0.10

≤0.25

SUJ2

0.95-1.10

0.15-0.35

≤0.50

≤0.025

≤0.025

1.30-1.60

≤0.08

≤0.25

100Cr6

0.93-1.05

0.15-0.35

0.25-0.45

≤0.025

≤0.015

1.35-1.60

0.10

Features of 52100 alloy steel

1, High carbon alloy steel

2, High degree of hardness

3, Good compressive strength and abrasion resistance

Typical Applications 

1, Taps, gauges, swaging dies, ejector pins

2, Ball and roller bearings

3, Machine parts and for press tools

Q: How are nickel-based alloys used in the aerospace industry?
Nickel-based alloys are extensively used in the aerospace industry due to their excellent strength-to-weight ratio, high temperature resistance, and corrosion resistance. These alloys are commonly utilized in engine components, such as turbine blades and exhaust systems, to withstand the extreme operating conditions and increase fuel efficiency. Additionally, nickel-based alloys are employed in aircraft structural parts and landing gear due to their durability and ability to withstand high stress and fatigue. Overall, these alloys play a vital role in enhancing the performance and safety of aircraft in the aerospace industry.
Q: What are the cost implications of using special steel?
The cost implications of using special steel can vary depending on several factors. Special steel generally refers to alloyed or high-grade steel that offers enhanced properties such as improved strength, corrosion resistance, or heat resistance. One of the main cost implications is the higher initial cost of special steel compared to regular carbon steel. Special steel often requires more complex and expensive production processes, which can drive up the cost of raw materials. Additionally, the limited availability of certain alloying elements used in special steel can further increase its price. However, using special steel can also lead to cost savings in the long run. Its improved properties can result in reduced maintenance and replacement costs. For example, special steel that offers better corrosion resistance may require less frequent painting or coating, saving on maintenance expenses. Similarly, using high-strength special steel can allow for the use of lighter and thinner components, reducing material costs and transportation expenses. Furthermore, special steel's enhanced performance characteristics can lead to improved product quality and durability, which may result in higher customer satisfaction, increased sales, and potentially higher profits. In summary, while the initial cost of special steel is usually higher, its long-term benefits in terms of improved performance, reduced maintenance, and potential sales growth can offset these expenses, making it a cost-effective choice in many applications.
Q: What are the main applications of special steel in the packaging machinery?
Special steel is widely used in packaging machinery due to its outstanding properties such as high strength, corrosion resistance, and durability. It is primarily utilized in the construction of machine components like blades, dies, and molds, ensuring efficient and precise cutting, shaping, and forming of packaging materials. Additionally, special steel's ability to withstand high temperatures and extreme pressures make it suitable for applications requiring heat sealing or sterilization of packaging. Overall, special steel plays a crucial role in enhancing the performance, reliability, and longevity of packaging machinery.
Q: What are the different welding techniques for special steel?
There are several different welding techniques that can be used for special steel, depending on the specific requirements and characteristics of the steel. Some of the commonly used welding techniques for special steel include: 1. Shielded Metal Arc Welding (SMAW): Also known as stick welding, SMAW uses a consumable electrode coated in flux to create an arc between the electrode and the base metal. This technique is versatile and can be used for a wide range of steel types, including special steel. 2. Gas Metal Arc Welding (GMAW): Also known as MIG (Metal Inert Gas) welding, GMAW uses a continuous solid wire electrode and a shielding gas to protect the weld from atmospheric contamination. This technique is commonly used for thinner special steel materials. 3. Flux-Cored Arc Welding (FCAW): Similar to GMAW, FCAW uses a continuous tubular electrode filled with flux. This flux provides additional shielding and can allow for higher deposition rates. FCAW is suitable for special steel with thick sections or when welding in outdoor or windy conditions. 4. Gas Tungsten Arc Welding (GTAW): Also known as TIG (Tungsten Inert Gas) welding, GTAW uses a non-consumable tungsten electrode and a shielding gas. This technique is known for its precision and is often used for special steel alloys that require high-quality and aesthetically pleasing welds. 5. Plasma Arc Welding (PAW): PAW is similar to GTAW but uses a more focused arc created by passing gas through a constricted nozzle. This technique is often used for special steel alloys that have higher melting temperatures or require deeper penetration. 6. Submerged Arc Welding (SAW): SAW involves feeding a continuous wire electrode into a molten flux layer that covers the weld. This technique is commonly used for heavy and thick special steel sections, as it provides excellent penetration and high deposition rates. It is important to choose the most appropriate welding technique for special steel based on factors such as the steel composition, thickness, intended application, and desired weld quality. Consulting with a qualified welding professional or referring to the steel manufacturer's recommendations can help ensure the best welding technique is selected for the specific special steel being used.
Q: How is carbon steel used in the manufacturing of pipes and tubes?
Carbon steel is commonly used in the manufacturing of pipes and tubes due to its high strength, durability, and affordability. Its composition, which includes mainly iron and carbon, provides it with excellent mechanical properties and resistance to corrosion. Carbon steel pipes and tubes are widely used in various industries, including oil and gas, construction, and manufacturing, for conveying fluids, gases, and solids. Its versatility and reliability make it a popular choice for a wide range of applications.
Q: How does special steel contribute to the automotive racing machinery industry?
Special steel plays a crucial role in the automotive racing machinery industry by providing high-performance materials that enhance the performance, durability, and safety of racing vehicles. One of the primary contributions of special steel to the industry is its ability to improve the power and speed of racing cars. Special steel alloys, such as carbon fiber-reinforced steel or high-strength steel, offer superior strength-to-weight ratios, allowing manufacturers to reduce the weight of the vehicle while maintaining structural integrity. This reduction in weight enhances the acceleration and maneuverability of the racing car, resulting in increased speed and improved lap times on the track. In addition to improved performance, special steel also contributes to the safety of racing vehicles. The high strength and impact resistance properties of certain steel alloys make them ideal for constructing roll cages, chassis, and other critical safety components. These materials can withstand extreme forces during crashes or collisions, providing enhanced protection for the driver and minimizing the risk of severe injuries. Special steel also contributes to the longevity and durability of automotive racing machinery. The harsh conditions of racing, such as high temperatures, vibrations, and mechanical stress, can cause regular steel to deform or deteriorate quickly. However, special steel alloys are specifically engineered to withstand these demanding environments, ensuring that racing cars can endure the rigorous demands of the sport without compromising performance or safety. Furthermore, special steel alloys offer excellent thermal conductivity and heat resistance properties, which are essential for racing vehicles that generate immense heat during high-speed runs. By efficiently dissipating heat, special steel helps prevent overheating and ensures optimal engine performance, reducing the risk of mechanical failures and maximizing the lifespan of the racing machinery. In summary, special steel contributes significantly to the automotive racing machinery industry by enhancing the performance, durability, and safety of racing vehicles. The use of high-performance steel alloys helps increase speed, improve lap times, and reduce the weight of the vehicles. It also provides superior strength and impact resistance, enhancing safety during crashes or collisions. Moreover, special steel alloys offer excellent heat resistance and thermal conductivity, ensuring optimal engine performance and prolonging the lifespan of the racing machinery.
Q: What are some common applications of special steel?
Some common applications of special steel include manufacturing of automobiles, aircraft, and machinery, as well as in construction, oil and gas pipelines, and power generation. It is also used in the production of tools, cutlery, and surgical instruments, due to its durability, strength, and corrosion resistance properties.
Q: How does special steel perform in terms of hardness?
Special steel is known to exhibit excellent hardness properties due to its unique composition and manufacturing processes. It is specifically designed to have a higher level of hardness compared to regular steel, making it extremely resistant to wear, abrasion, and deformation.
Q: How does special steel contribute to the manufacturing of hydraulic components?
Special steel plays a crucial role in the manufacturing of hydraulic components by providing the required strength, durability, and corrosion resistance necessary for these components to perform optimally. The unique properties of special steel, such as high tensile strength and excellent machinability, ensure that hydraulic components can withstand high pressure and repetitive movements without deformation or failure. Additionally, the corrosion resistance of special steel helps protect hydraulic components from the harsh operating environments they often encounter, extending their lifespan and reducing maintenance requirements.
Q: What are the different cutting grades of special steel?
There are several cutting grades of special steel that are commonly used in various industries. These cutting grades are designed to possess specific properties and characteristics that make them suitable for different cutting applications. Some of the different cutting grades of special steel include: 1. High-speed steel (HSS): This cutting grade is known for its excellent hardness, wear resistance, and heat resistance. It can retain its hardness at high temperatures, making it ideal for cutting tools used in high-speed machining operations. 2. Tool steel: Tool steel is a versatile cutting grade that is used for a wide range of cutting applications. It offers high hardness, toughness, and abrasion resistance, making it suitable for cutting tools, dies, and molds. 3. Stainless steel: Stainless steel is a popular cutting grade due to its corrosion resistance and durability. It is commonly used in the food, medical, and automotive industries, where precision cutting and cleanliness are crucial. 4. Carbon steel: Carbon steel is a commonly used cutting grade known for its high strength and toughness. It is often used for cutting tools, knives, and blades. However, carbon steel is susceptible to corrosion, so proper maintenance and care are necessary to prevent rusting. 5. Alloy steel: Alloy steel is a cutting grade that is made by combining different elements to enhance its properties. It offers improved hardness, strength, and wear resistance, making it suitable for high-stress cutting applications. Alloy steel is commonly used in the aerospace, automotive, and construction industries. These are just a few examples of the different cutting grades of special steel. Each grade has its own unique properties and advantages, allowing manufacturers to choose the most suitable grade based on the specific cutting requirements and conditions.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords