• Continuous Casting Steel Billet Q275/235 System 1
  • Continuous Casting Steel Billet Q275/235 System 2
  • Continuous Casting Steel Billet Q275/235 System 3
Continuous Casting Steel Billet Q275/235

Continuous Casting Steel Billet Q275/235

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
1000 m.t.
Supply Capability:
200000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

STEEL BILLET

1.Structure of Steel Billet

Steel billet(ingot) by cogging or breakdown of semi-finished products, is the raw material of all kinds of steel mill. Billet section of square, round, flat, rectangular and abnormity of several kinds of, mainly related to the shape of rolled products. 

2.Main Features of Steel Billet

Rectangular billet continuous casting billet and mainly general carbon steel, low carbon low silicon cold-rolled material, high quality carbon structural steel, high strength low alloy steel, special steel, etc. 

The billet is mainly divided into two kinds from the shape: 

Slab: cross section width and height of the ratio of the larger, mainly used for rolling plate. 

Billet: equal cross section width and height, or a huge difference, mainly used for rolling steel, wire rod. , 

Steel billets have distinct characteristics as compared with already furnished steel bars and products. Billets have a specific grain structure, which enables the metal to be processed more intricately. Steel billets are also known for their malleability and ductility, especially when exposed to varying temperatures during shaping and molding.

3.Processing of Steel Billet

Steel billets are considered fresh and raw, and they must undergo a series of manufacturing processes before they can be used for various purposes. Billets are made by means of freezing molten liquid, and are later exposed to extremely low temperatures in order to allow the metal to take shape and solidify in chemical structure. The temperature manipulates the metal's physical properties, and tones its strength and durability. The subsequent processes provide the metal's curved mold design so that it can fit the allotted space provided by other machines, which complete the finishing procedures.

4.Steel Billet Images 

 Continuous Casting Steel Billet Q275/235

Continuous Casting Steel Billet Q275/235


5.Usage of Steel Billet

Billets, or ingots (as they sometimes referred to), are not of practical use until they have been formed into more functional shapes and sizes. While they have already been put in the furnace, they still require a series of shaping and molding procedures such as hot and cold working, milling and cutting before they are sold in hardware stores, or used for different applications. The unformed billets, however, can be used in striking currency such as coins and as reserves, similar to gold bars.

6. Steel Billet Specification

Hot rolled billet steel 

Size: 50x50mm-180x180mm

Steel Grade: 3SP, 5SP,Q195,Q235,Q255,Q275 Length:3m-12m

MOQ: 1000MT/size

Payment term: TT or LC

Packing: in bulk , bundle

Shipment: by container , bulk vessel

Packaging Details: bundles with steel strips or as customers's requirements

Delivery time: 15-30 days after the deposit

Loading port:Tianjin, or other port China 

Origin :China 

Inspection:Third party inspection before loading.

7.FAQ

We have organized several common questions for our clientsmay help you sincerely: 

1) How about your company

 A world class manufacturer & supplier of castings forging in carbon steel and alloy steelis one of the large-scale professional investment casting production bases in China,consisting of both casting foundry forging and machining factory. Annually more than 8000 tons Precision casting and forging parts are exported to markets in Europe,America and Japan. OEM casting and forging service available according to customer’s requirements.

2) How to guarantee the quality of the products

 We have established the international advanced quality management systemevery link from raw material to final product we have strict quality testWe resolutely put an end to unqualified products flowing into the market. At the same time, we will provide necessary follow-up service assurance.

    3)If there’s something wrong with the quality of the products, how do we return the goods?

We promise you the quality will be the same as the samples you confirmed. If there’s something wrong with the quality of the products, please send back sample from the shipment goods to us and let us know the quantity, then we will investigate in our work shop. If it is our problem, we will offer you discount or replacements for free.


 


Q: What are the different methods of steel billet surface honing?
There are several methods of steel billet surface honing, including manual honing, machine honing, and diamond honing. Manual honing involves using hand-held tools, such as honing stones or abrasive pads, to manually remove imperfections and create a smooth surface on the steel billet. Machine honing utilizes automated machines with rotating honing tools to achieve a consistent and precise surface finish. Diamond honing, on the other hand, uses diamond abrasive stones or pads to achieve a high-quality and precise surface finish on the steel billet. Each method has its own advantages and is chosen based on the specific requirements and desired outcome of the honing process.
Q: Can steel billets be used in the production of marine equipment?
Yes, steel billets can be used in the production of marine equipment. Steel billets are the raw material for manufacturing various steel products, including marine equipment such as ship hulls, propellers, and offshore structures. The high strength, durability, and corrosion resistance of steel make it a suitable choice for marine applications, ensuring the equipment can withstand harsh marine environments and provide reliable performance.
Q: How are steel billets used in the manufacturing of furniture?
Steel billets are commonly used in the manufacturing of furniture as they serve as the raw material for various components. These billets are typically heated and molded into different shapes to create the structural framework of furniture pieces such as chairs, tables, and bed frames. The malleability and strength of steel make it a preferred choice for furniture manufacturing, as it provides durability and stability to the end product. Additionally, steel billets can be easily welded and joined together, allowing for the creation of intricate designs and intricate structures. Overall, steel billets play a crucial role in the manufacturing of furniture by providing the necessary strength and versatility required for creating high-quality and long-lasting furniture pieces.
Q: What are the challenges faced in the production of steel billets?
The production of steel billets encounters various obstacles. One major hurdle is the acquisition of raw materials. Typically, steel billets are created from iron ore, which must first be mined and processed. However, the availability and quality of iron ore can fluctuate, making it difficult to maintain a consistent supply. Another challenge arises from the energy-intensive nature of steel production. Converting iron ore into steel billets demands significant amounts of energy, primarily in the form of electricity and fossil fuels. Consequently, this results in high production costs and contributes to environmental concerns, including greenhouse gas emissions. In addition, the production of steel billets involves intricate metallurgical processes. The steel must be heated to high temperatures and undergo various treatments to achieve the desired properties. Ensuring consistent quality and meeting customer specifications can be problematic, as even slight deviations in the production process can impact the final product's performance. Maintaining a safe working environment poses a considerable challenge in steel billet production. The process involves handling heavy machinery, molten metal, and potentially hazardous chemicals. Effective safety measures and protocols must be implemented to safeguard workers and prevent accidents. Lastly, market dynamics and competition within the steel industry create hurdles in the production of steel billets. Fluctuating demand, changes in customer preferences, and price volatility can affect production planning and profitability. Steel producers must remain competitive by continuously improving efficiency, reducing costs, and adapting to market trends. In summary, the production of steel billets faces challenges related to raw material sourcing, energy consumption, metallurgical processes, safety, and market dynamics. Overcoming these obstacles necessitates a combination of technological advancements, efficient operations, and strategic decision-making to ensure a sustainable and successful production process.
Q: How do steel billets contribute to the manufacturing of marine equipment?
Steel billets are an essential raw material in the manufacturing of marine equipment. They serve as the starting point for various processes such as rolling, forging, and machining, which shape the billets into the desired components. These components, made from high-quality steel, provide strength, durability, and corrosion resistance necessary for marine equipment, ensuring their safe and reliable operation in challenging maritime environments.
Q: How are steel billets used in the production of transmission towers?
Transmission towers require steel billets, which are semi-finished steel products, as a crucial component for their production. The first step in the process is to heat the steel billets in a furnace at extremely high temperatures. This hot rolling process softens the billets and makes them more malleable, enabling easy shaping and forming into the desired structure of the transmission tower. Once heated, the billets are then passed through rolling mills, where they are shaped into long, cylindrical sections known as steel bars. These bars are further processed and cut to the required length and dimensions based on the specific design and requirements of the transmission tower. Following the shaping and cutting, the steel bars undergo galvanization, which involves coating them with a protective layer of zinc. This zinc coating provides corrosion resistance, safeguarding the tower from environmental elements like moisture and rust. Finally, the galvanized steel bars are assembled and welded together to create the intricate framework of the transmission tower. The usage of strong and durable steel billets ensures that the tower can withstand heavy loads and extreme weather conditions. In conclusion, steel billets are essential for the production of transmission towers due to their strength, flexibility, and corrosion resistance. Their ability to be shaped and formed into the desired dimensions, along with their durability, make them an ideal material for constructing transmission towers.
Q: What are the common testing methods used for quality control of steel billets?
The common testing methods used for quality control of steel billets include visual inspection, dimensional measurements, chemical analysis, and mechanical testing. Visual inspection involves examining the surface of the billets for any defects or abnormalities. Dimensional measurements ensure that the billets meet the specified size and shape requirements. Chemical analysis determines the composition of the steel, checking for the presence of impurities or elements that may affect the quality. Mechanical testing involves subjecting the billets to various tests such as hardness testing, tensile testing, and impact testing to evaluate their strength and other mechanical properties. These testing methods ensure that the steel billets meet the required quality standards.
Q: What are the different types of steel billets available?
There are several different types of steel billets available, each with its own unique properties and uses. Some of the most common types include: 1. Carbon Steel Billets: These are made primarily of iron and carbon, with trace amounts of other elements. They are known for their high strength and durability, making them suitable for a wide range of applications such as construction, automotive, and machinery manufacturing. 2. Alloy Steel Billets: As the name suggests, these billets are made by adding various alloying elements such as chromium, nickel, or manganese to the carbon steel. This enhances the mechanical properties of the steel, making it more resistant to corrosion, wear, and heat. Alloy steel billets are commonly used in the production of tools, gears, and high-strength components. 3. Stainless Steel Billets: These billets contain a minimum of 10.5% chromium, which gives them excellent corrosion resistance. Stainless steel billets are widely used in industries such as food processing, chemical, and medical, where hygiene and resistance to rust are crucial. 4. Tool Steel Billets: Designed for applications requiring high hardness, wear resistance, and toughness, tool steel billets are often used in the production of cutting tools, dies, and molds. They are made by adding elements such as tungsten, vanadium, or molybdenum to carbon steel, resulting in a material capable of withstanding extreme conditions. 5. Low Alloy Steel Billets: These billets contain small amounts of alloying elements, typically less than 5%, such as manganese, silicon, or copper. They offer improved strength, toughness, and weldability compared to carbon steel, making them suitable for structural applications in construction and engineering. 6. Microalloyed Steel Billets: Also known as HSLA (High-Strength Low-Alloy) steel, microalloyed steel billets contain small amounts of niobium, vanadium, or titanium. This results in a fine-grained microstructure and enhanced strength, allowing the production of lighter and more efficient structures in industries such as automotive and aerospace. These are just a few examples of the different types of steel billets available. Each type has its own specific properties and applications, and choosing the right type depends on the intended use and desired characteristics of the final product.
Q: What is the typical length of a steel billet?
The length of a steel billet is subject to variation due to factors such as its intended use, the production process employed, and the specific standards of the industry. However, it is generally observed that steel billets are commonly manufactured within the range of 2 to 12 meters (6.5 to 40 feet). These lengths are frequently utilized for subsequent procedures, such as hot rolling or forging, in order to fabricate diverse steel products including bars, rods, beams, or other structural elements. It is worth mentioning that the actual length of a steel billet can be customized to meet the precise requirements of a specific application or customer order.
Q: What are the different types of steel billets?
There are several different types of steel billets, each with its own unique characteristics and applications. Some of the most common types include: 1. Carbon Steel Billets: These are the most widely used type of steel billets and are made from iron and carbon. Carbon steel billets are known for their high strength and durability, making them suitable for a wide range of applications, including construction, automotive, and machinery manufacturing. 2. Alloy Steel Billets: These billets are made by adding various alloying elements to carbon steel, such as chromium, nickel, or manganese. Alloy steel billets offer enhanced properties such as increased strength, hardness, and corrosion resistance. They are often used in industries that require high-performance materials, such as aerospace, oil and gas, and power generation. 3. Stainless Steel Billets: Stainless steel billets are made with a high content of chromium, which provides excellent resistance to corrosion and oxidation. They are commonly used in applications where hygiene, durability, and aesthetic appearance are crucial, such as food processing, medical equipment, and architectural structures. 4. Tool Steel Billets: Tool steel billets are specially designed to have high hardness, wear resistance, and heat resistance. They are commonly used to make cutting tools, molds, and dies for various industries, including automotive, manufacturing, and construction. 5. Electrical Steel Billets: Electrical steel billets are made from low carbon steel with specific magnetic properties. They are used in the manufacturing of electrical equipment, such as transformers, motors, and generators, where low energy loss and high magnetic permeability are vital. 6. High-speed Steel Billets: High-speed steel billets are alloyed with elements like tungsten, molybdenum, and cobalt, which enable them to retain their hardness and strength at high temperatures. They are widely used to make cutting tools that need to withstand high-speed cutting operations, such as drills, milling cutters, and taps. These are just a few examples of the different types of steel billets available. The choice of steel billet depends on the specific requirements of the application, such as strength, durability, corrosion resistance, or special properties needed for particular industries.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords