• Construction Material Prices Of High Tensile Deformed Steel Bar Quality Choice System 1
  • Construction Material Prices Of High Tensile Deformed Steel Bar Quality Choice System 2
  • Construction Material Prices Of High Tensile Deformed Steel Bar Quality Choice System 3
  • Construction Material Prices Of High Tensile Deformed Steel Bar Quality Choice System 4
  • Construction Material Prices Of High Tensile Deformed Steel Bar Quality Choice System 5
  • Construction Material Prices Of High Tensile Deformed Steel Bar Quality Choice System 6
Construction Material Prices Of High Tensile Deformed Steel Bar Quality Choice

Construction Material Prices Of High Tensile Deformed Steel Bar Quality Choice

Ref Price:
get latest price
Loading Port:
Qingdao
Payment Terms:
TT OR LC
Min Order Qty:
5 m.t.
Supply Capability:
100000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Carbon Steel,Spring Steel,Bearing Steel,Gear Steel,Deformed Steel,Stainless Steel,Alloy Steel
Shape:
Steel Coil,Steel Sheet,Steel Wire Rod,Steel Flat Bar,Steel Square Bar,Steel Angle,Steel Round Bar,Steel Billets
Technique:
Hot Rolled,Cold Rolled,Cold Drawn,ERW,Forged,Saw,Extruded,EFW,Spring
Surface Treatment:
Galvanized,Coated,Copper Coated,Color Coated,Oiled,Dry,Chromed Passivation,Polished,Bright,Black,PVDF Coated
Certification:
ISO,SGS,BV,IBR,RoHS,CE,API,BSI,UL
Thickness:
16mm-25mm
Width:
16mm-25mm
Length:
12
Outer Diameter:
16mm-25mm
Net Weight:
100kg
Packaging:
seaworthy packaging

Construction Material Prices Of High Tensile Deformed Steel Bar Quality Choice

Detailed Information of Construction Material Prices Of High Tensile Deformed Steel Bar Quality Choice

NameSteel Round Bar
ShapeRound Bar/Square Bar/Flat Bar/Plate/Wire
StandardGB/ASTM/SAE/AISI/DIN/JIS/EN/BS
Surface Treatment:Black/Peeling/Polished/Machined  
Delivery Condition:Hot Rolled or Forged/Peeled or Black Surface
TestSGS/UT 100% Elements Testing
Certificate:ISO/Mill Certificate
Service:24 hours online service /
more than 20 years trading and manufacture 
Quality Assurance:the third party inspection, such as SGS, BV, TUV…etc. is acceptable
Packaging Details:Seaworthy Packaging or as per customer's packing instruction

Product Overviews of Construction Material Prices Of High Tensile Deformed Steel Bar Quality Choice

Product NameTypical GradesDiameter(mm)Standard Adopted
Carbon Steel20 (1020/S20C/C22)  
40 (1040/S40C/C40)Ø16-Ø300 
45 (1045/S45C/C45)  
Bearing SteelGCr9 (51100/SUJ1)  
GCr15 (52100/SUJ2/100Gr6)Ø12-Ø250 
GCr9SiMn (A485-Gr.1/SUJ3) GB/SAE/
Cr-Mo Steel20Cr (5120/SCr420H/20Cr4) JIS/DIN
40Cr (5140/SCr440/41Cr4)Ø12-Ø250 
42CrMo(4140/SCM440/42CrMo4)  
Gear Steel20CrNiMo  
20CrMn(5115/SMnC420/20MnCr5)Ø16-Ø600 
20CrNiMo(8620/SNCM220/20CrMiMo2)  

Company Introduction of Construction Material Prices Of High Tensile Deformed Steel Bar Quality Choice

CNBM International Corporation is the most import and export platform of CNBM group(China National Building Material Group Corporation) ,which is a state-owned enterprise, ranked in 270th of Fortune Global 500 in 2015.

With its advantages, CNBM International are mainly concentrate on Cement, Glass, Iron and Steel, Ceramics industries and devotes herself for supplying high quality series of refractories as well as technical consultancies and logistics solution.

 

Construction Material Prices Of High Tensile Deformed Steel Bar Quality Choice

Construction Material Prices Of High Tensile Deformed Steel Bar Quality Choice

 

After-sale servicel  CNBM provides the services and support you need for every step of our cooperation. We’re the business partners you can trust; you can relax and get on with doing business. 
l  For any problem, please kindly contact us at any your convenient time, we’ll reply you in our first priority within 24 hours
 
Advantages l  Industry experience over 20 years.
l  Shipment of goods -More than 70 countries worldwide.
l  The most convenient transport and prompt delivery.
l  Competitive price with best service.
l  High technical production line with top quality products.
l  High reputation based on best quality products.
 
 

Packaging & Delivery of Construction Material Prices Of High Tensile Deformed Steel Bar Quality Choice

 

Packaging DetailSea worthy packing /as per customer's packing instruction
Delivery Detail15 ~ 40 days after receiving the deposit

Products Show

Construction Material Prices Of High Tensile Deformed Steel Bar Quality Choice

FAQ:

 

Are you a trading company or manufacturer?Manufacturer
What’s the MOQ?1000m2 
What’s your delivery time? 15-20 days after downpayment received
Do you Accept OEM service?Yes
what’s your delivery terms?FOB/CFR/CIF
What's the Payment Terms?30% as deposit,70% before shipment by T/T
Western Union acceptable for small amount.
L/C acceptable for large amount.
Scrow ,Paybal,Alipay are also ok 
Why  choose  us?Chose happens because of quality, then price, We can give you both.
Additionally, we can also offer professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposals.
What's your available port of Shipment?Main Port, China
What’s your featured  services?Our service formula: good quality+ good price+ good service=customer's trust
Where are your Market?Covering more than 160 countries in the world

 

Q: How does special steel contribute to the automotive exhaust system industry?
Special steel plays a crucial role in the automotive exhaust system industry by offering several significant contributions. Firstly, special steel, such as stainless steel, is highly resistant to corrosion, which is a common issue faced by exhaust systems due to the exposure to high temperatures and corrosive gases. This corrosion resistance ensures the longevity and durability of the exhaust system, reducing the need for frequent replacements and repairs. Moreover, special steel possesses excellent heat resistance properties. The exhaust system operates under extreme temperatures, and special steel can withstand these conditions without undergoing deformation or structural damage. This ability to handle high temperatures ensures that the exhaust system functions efficiently and maintains its performance over an extended period. In addition, special steel offers exceptional strength and durability. The exhaust system is subjected to constant vibrations, impacts, and stress due to road conditions and engine movements. Special steel's high strength and toughness enable the exhaust system to withstand these forces, preventing premature failures and ensuring the safety and reliability of the vehicle. Furthermore, special steel allows for the design and manufacturing of complex and lightweight exhaust system components. With advancements in steel technology, manufacturers can create intricate shapes and thin-walled structures, reducing the overall weight of the exhaust system. This weight reduction contributes to improved fuel efficiency and vehicle performance, as it reduces the overall load on the engine. Lastly, special steel provides the automotive industry with the flexibility to meet increasingly stringent emission regulations. By utilizing special steel in the exhaust system, manufacturers can incorporate catalytic converters and other emission control devices effectively. These devices play a vital role in reducing harmful emissions, such as carbon monoxide, nitrogen oxides, and particulate matter, helping vehicles meet environmental standards. In conclusion, special steel is an essential component in the automotive exhaust system industry. Its corrosion resistance, heat resistance, strength, and lightweight properties contribute to the longevity, reliability, and performance of the exhaust system. Moreover, special steel enables compliance with emission regulations, ensuring that vehicles are environmentally friendly. Overall, special steel plays a critical role in enhancing the efficiency and sustainability of the automotive exhaust system industry.
Q: What are the key alloying elements used in special steel?
The key alloying elements used in special steel vary depending on the specific application and desired properties. However, some of the commonly used alloying elements in special steel include chromium, nickel, molybdenum, vanadium, tungsten, and cobalt. Chromium is often added to improve the steel's corrosion resistance and to enhance its hardness and wear resistance. Nickel is another important alloying element that increases the steel's strength, toughness, and corrosion resistance. Molybdenum is commonly used to improve the steel's high-temperature strength, creep resistance, and resistance to corrosion by certain chemicals. Vanadium is added to increase the steel's strength, toughness, and wear resistance, particularly at high temperatures. Tungsten is another element used for improving the steel's high-temperature strength and wear resistance. Cobalt is often added to enhance the steel's strength and toughness, especially at elevated temperatures. These alloying elements are carefully selected and added in specific proportions to achieve the desired properties for different applications, such as in aerospace, automotive, energy, and tooling industries. By incorporating these alloying elements, special steel can be tailored to meet specific performance requirements, making it suitable for a wide range of demanding applications.
Q: What is the significance of special steel in the medical field?
Special steel, which is also referred to as medical grade steel, holds a vital role in the medical field due to its distinct properties and importance. Specifically designed and produced to meet the strict requirements of the healthcare industry, special steel's significance in the medical field can be grasped through the following points: 1. Biocompatibility: Special steel demonstrates biocompatibility, meaning it is non-toxic and does not elicit an adverse reaction when it comes into contact with the human body. This makes it an ideal material for medical devices like surgical instruments, implants, and orthopedic tools. 2. Resistance to corrosion: Special steel exhibits high resistance to corrosion and rust, ensuring the endurance and durability of medical instruments. Instruments used in surgical procedures require repeated sterilization, and the corrosive nature of sterilization agents can degrade ordinary steel. Special steel, with its superior resistance to corrosion, can withstand these harsh conditions, decreasing the risk of contamination and preserving the integrity of medical equipment. 3. Mechanical properties: Special steel possesses exceptional mechanical properties, such as high strength, toughness, and ductility. These characteristics are crucial for medical devices as they need to endure the stresses and strains of surgical procedures, maintain their shape, and deliver reliable performance. 4. Compatibility with sterilization: Special steel can withstand various sterilization methods, including steam sterilization, ethylene oxide sterilization, and gamma radiation. This guarantees that medical instruments made from special steel can be effectively sterilized, preventing the transmission of infections and minimizing the risk of contamination during surgeries. 5. Precision manufacturing: Special steel can be shaped into intricate forms and sizes, enabling the production of precise medical instruments. Its superior machinability allows for the creation of fine and sharp edges, which are vital for surgical tools used in delicate procedures. 6. Antibacterial properties: Certain special steels, such as stainless steel, possess inherent antibacterial properties. This characteristic is particularly crucial in the medical field, where preventing infections is of utmost importance. Instruments made from antibacterial special steel can hinder the growth of bacteria, minimizing the risk of post-operative complications. In conclusion, the significance of special steel in the medical field lies in its biocompatibility, resistance to corrosion, mechanical properties, compatibility with sterilization, precision manufacturing, and potential antibacterial properties. These qualities render special steel an indispensable material for the manufacturing of medical devices, ensuring their dependability, durability, and safety for both healthcare professionals and patients.
Q: How does special steel contribute to the mining industry?
Special steel contributes to the mining industry by offering enhanced durability, high strength, and resistance to extreme conditions. It is used in various mining equipment and machinery, such as drills, excavators, and crushers, to withstand the harsh environment and increase efficiency. Additionally, special steel alloys with specific properties are utilized in mining processes like ore extraction and mineral processing, ensuring optimum performance and reducing downtime.
Q: How does special steel contribute to the magnetic properties of products?
The unique composition and structure of special steel contribute to the magnetic properties of products. This type of steel, also known as alloy steel, contains specific elements like nickel, chromium, manganese, and molybdenum, which alter its magnetic behavior. Depending on the desired application, these elements can either enhance or suppress the magnetism of the steel. For example, the addition of nickel increases the magnetic permeability of steel, making it more responsive to magnetic fields. This characteristic is extremely beneficial in applications such as transformers, where efficient magnetic flux conduction is necessary. Similarly, the inclusion of other magnetic elements like cobalt or iron can also improve the magnetic properties of special steel. On the other hand, certain elements can reduce or eliminate the magnetic qualities of steel. Chromium, for instance, is famous for its non-magnetic properties. When chromium is added to steel, it decreases its magnetic permeability, making it suitable for applications that require non-magnetic features, like medical equipment or electronics. Moreover, the magnetic properties of special steel are influenced by its structure. Heat treatment processes can manipulate the crystalline structure of the steel, thereby affecting its magnetization. For instance, annealing the steel can increase the size of the crystal grains, resulting in reduced magnetization. Conversely, cold working or quenching the steel can create a finer grain structure, enhancing its magnetic properties. In summary, by incorporating specific elements and manipulating its structure, special steel contributes to the magnetic properties of products. Depending on the application requirements, these elements can either enhance or suppress magnetism. The ability to tailor the magnetic properties of special steel makes it highly valuable in industries such as telecommunications, energy, and electronics.
Q: What are the main applications of special steel in the oil and gas equipment?
Special steel is widely used in the oil and gas equipment industry due to its exceptional properties such as high strength, corrosion resistance, and heat resistance. Some of the main applications of special steel in this industry include manufacturing of drilling equipment, pipelines, valves, fittings, and other critical components. Special steel ensures the durability and reliability of these equipment in harsh environments, such as offshore drilling, where they are subjected to extreme temperatures, high pressures, and corrosive substances.
Q: How does special steel contribute to the automotive racing machinery industry?
Special steel plays a crucial role in the automotive racing machinery industry by providing high-performance materials that enhance the performance, durability, and safety of racing vehicles. One of the primary contributions of special steel to the industry is its ability to improve the power and speed of racing cars. Special steel alloys, such as carbon fiber-reinforced steel or high-strength steel, offer superior strength-to-weight ratios, allowing manufacturers to reduce the weight of the vehicle while maintaining structural integrity. This reduction in weight enhances the acceleration and maneuverability of the racing car, resulting in increased speed and improved lap times on the track. In addition to improved performance, special steel also contributes to the safety of racing vehicles. The high strength and impact resistance properties of certain steel alloys make them ideal for constructing roll cages, chassis, and other critical safety components. These materials can withstand extreme forces during crashes or collisions, providing enhanced protection for the driver and minimizing the risk of severe injuries. Special steel also contributes to the longevity and durability of automotive racing machinery. The harsh conditions of racing, such as high temperatures, vibrations, and mechanical stress, can cause regular steel to deform or deteriorate quickly. However, special steel alloys are specifically engineered to withstand these demanding environments, ensuring that racing cars can endure the rigorous demands of the sport without compromising performance or safety. Furthermore, special steel alloys offer excellent thermal conductivity and heat resistance properties, which are essential for racing vehicles that generate immense heat during high-speed runs. By efficiently dissipating heat, special steel helps prevent overheating and ensures optimal engine performance, reducing the risk of mechanical failures and maximizing the lifespan of the racing machinery. In summary, special steel contributes significantly to the automotive racing machinery industry by enhancing the performance, durability, and safety of racing vehicles. The use of high-performance steel alloys helps increase speed, improve lap times, and reduce the weight of the vehicles. It also provides superior strength and impact resistance, enhancing safety during crashes or collisions. Moreover, special steel alloys offer excellent heat resistance and thermal conductivity, ensuring optimal engine performance and prolonging the lifespan of the racing machinery.
Q: How does special steel perform in terms of thermal conductivity?
Special steel typically has lower thermal conductivity compared to other materials. This means that it is not as efficient in conducting heat and may retain heat for longer periods of time.
Q: What are the main properties of special steel?
Special steel is characterized by a variety of properties that set it apart from regular steel. Some of its key properties include high strength, excellent corrosion resistance, superior heat resistance, exceptional toughness, and good wear resistance. Additionally, special steel can be easily machined, welded, and formed, making it highly versatile for various industrial applications.
Q: What are the requirements for special steel used in chemical processing?
The demands for special steel used in chemical processing are generally stricter compared to regular steel due to the harsh and corrosive nature of the chemicals involved. Some of the key prerequisites for special steel in chemical processing include: 1. Corrosion resistance: Special steel employed in chemical processing must possess a high resistance to corrosion caused by acids, alkalis, and other corrosive chemicals. This is accomplished by incorporating alloying elements like chromium, nickel, and molybdenum, which create a protective oxide layer on the steel's surface, preventing it from reacting with the chemicals. 2. High temperature resistance: Chemical processing frequently involves reactions at high temperatures. Consequently, special steel used in this industry must exhibit excellent heat resistance to maintain its strength and structural integrity under elevated temperatures. This is achieved by incorporating elements such as chromium, nickel, and tungsten, which aid in preserving the steel's stability at high temperatures. 3. Mechanical strength: Special steel employed in chemical processing should possess adequate mechanical strength to withstand the pressures and loads encountered in process equipment. This requirement is fulfilled by incorporating alloying elements like manganese, silicon, and carbon, which enhance the steel's strength and toughness. 4. Weldability: Weldability is a crucial requirement for special steel used in chemical processing as it allows for easy fabrication and installation of process equipment. Special steel with good weldability ensures robust and reliable joints, which are vital for the safe and efficient operation of chemical plants. 5. Resistance to stress corrosion cracking: Stress corrosion cracking is a significant concern in chemical processing environments. Therefore, special steel used in this industry should exhibit good resistance to stress corrosion cracking, which is accomplished by carefully selecting the alloying elements and controlling the material's microstructure. 6. Cleanliness: Special steel employed in chemical processing should be free from impurities and have a low content of harmful elements that could contaminate the process or react with the chemicals. This necessitates stringent quality control measures during steel production to ensure the desired cleanliness and purity. Meeting these requirements guarantees that special steel used in chemical processing can endure the aggressive chemical environment, high temperatures, and mechanical stresses encountered in the industry, resulting in safe and reliable operation of process equipment.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords