• CNBM Steel Formwork with Q345 Material for Civil Engineeing System 1
  • CNBM Steel Formwork with Q345 Material for Civil Engineeing System 2
  • CNBM Steel Formwork with Q345 Material for Civil Engineeing System 3
  • CNBM Steel Formwork with Q345 Material for Civil Engineeing System 4
  • CNBM Steel Formwork with Q345 Material for Civil Engineeing System 5
  • CNBM Steel Formwork with Q345 Material for Civil Engineeing System 6
CNBM Steel Formwork with Q345 Material for Civil Engineeing

CNBM Steel Formwork with Q345 Material for Civil Engineeing

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
100 pc
Supply Capability:
100000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Introduction for Steel Formwork :

Steel Formwork:used in highway,railway,bridge,tunnel and shearing wall,etc.Our company CNBM which is one of the largest State-Owned Enterprises in China which established in 1984 , has gained the confirmation from the specialist of China Architecture Scence Institute, and has been used by many building operation units and has been highly praised.In 2014, the total turnover volume of CNBM exceeds US$410 billion dollars with a total staff of 180,000. CNBM is listed in the World Top 500 Enterprises !

 

Characteristic for Wholly Steel Formwork :

1. High Smooth Surface

2. Convex ling for Edge Rib

3. Specialized Connection Pin for Edge Rib Connection

4. High Stiffness for Steel Surface

5. Light Weight for saving producing cost

6. Fast Separate and Easy transport

7. Recycling using

8. Scientific and Reasonable design to meet different working condition

 

Parameter and Specification :

Code

Size (mm)

Weight (KG)

Code

Size (mm)

Weight (KG)

P12021

1200*2100*55

102.96

P4018

400*1800*55

28.3

P12018

1200*1800*55

88.4

P4015

400*1500*55

23.8

P12015

1200*1500*55

74.15

P4012

400*1200*55

19.1

P12012

1200*1200*55

60.11

P4009

400*900*55

14.6

P10018

1000*1800*55

76.01

P4007

400*750*55

12.3

P10015

1000*1500*55

63.96

P4006

400*600*55

9.95

P10012

1000*1200*55

60.11

P3018

300*1800*55

20.7

P10009

1000*900*55

39.32

P3015

300*1500*55

17.4

P9018

900*1800*55

70.89

P3012

300*1200*55

14

P9015

900*1500*55

59.47

P3009

300*900*55

10.7

P9012

900*1200*55

48.03

P3007

300*750*55

8.8

P7518

750*1800*55

57.8

P3006

300*600*55

7.3

P7515

750*1500*55

48.47

P3004

300*400*55

5.46

P7512

750*1200*55

39.16

P2515

250*1500*55

15.17

P7509

750*900*55

29.85

P2512

250*1200*55

12.24

P7507

750*750*55

24.81

P2509

250*900*55

9.32

P6018

600*1800*55

43.1

P2507

250*750*55

7.71

P6015

600*1500*55

36.3

P2506

250*600*55

6.39

P6012

600*1200*55

31.7

P2015

200*1500*55

11.6

P6009

600*900*55

23.9

P2012

200*1200*55

9.4

P6007

600*750*55

18.55

P2009

200*900*55

7.1

P6006

600*600*55

16.25

P2007

200*750*55

5.9

P5018

500*1800*55

36.27

P2006

200*600*55

6.39

P5015

500*1500*55

30.15

P2004

200*450*55

3.64

P5012

500*1200*55

25.55

P1515

150*1500*55

9.5

P5009

500*900*55

20.38

P1506

150*600*55

4

P5007

500*750*55

15.48

P1504

150*450*55

2.98

P5006

500*600*55

13.58

P1015

100*1500*55

7.5

 

Code

Size (mm)

Weight (KG)

P1012

100*1200*55

6.9

P1009

100*900*55

4.6

P1007

100*750*55

3.8

P1006

100*600*55

3.1

P1004

100*450*55

2.33

E1515

150*150*1500

15.2

E1512

150*150*1200

12.26

E1509

150*150*900

9.34

E1507

150*150*750

7.77

E1506

150*150*600

6.46

E1504

150*150*450

4.87

E1015

100*150*1500

13.13

E1012

100*150*1200

10.61

E1009

100*150*900

8.07

E1006

100*150*600

5.44

Y1018

100*150*1800

14.56

Y1015

100*150*1500

12.29

Y1012

100*150*1200

9.72

Y1009

100*150*900

7.46

Y1007

100*150*700

6.19

Y1006

100*150*600

5.19

Y1004

100*150*450

3.92

J0018

50*50*1800

4.34

J0015

50*50*1500

3.7

J0012

50*50*1200

2.94

J0009

50*50*900

2.3

J0007

50*50*750

1.9

J0006

50*50*600

1.5

J0004

50*50*450

1.13

FAQ :

 

1. Who are we ?

We , CNBM , are a State-Owned Enterprise which established in 1984 , have 32 years experience ,enjoy high reputation .

 

2. Our Advantage :

Customized products , we have our own R&D department , we can design the drawing and suggest the suitable solution for your project .

 

3. Our after-Sales Service :

The international Sales Manager and Engineer can go to your job site for work direction and help you deal with your project . 

 

Factory Photos :

 

CNBM Steel Formwork with Q345 Material for Civil Engineeing

 

CNBM Steel Formwork with Q345 Material for Civil Engineeing

 

CNBM Steel Formwork with Q345 Material for Civil Engineeing

 

CNBM Steel Formwork with Q345 Material for Civil Engineeing

 

CNBM Steel Formwork with Q345 Material for Civil Engineeing

 

 

Q: Can steel formwork be used in underground structures?
Yes, steel formwork can be used in underground structures. Steel formwork is a versatile and durable construction material that can withstand the challenging conditions of underground structures. It offers excellent strength and stability, making it suitable for constructing walls, columns, and slabs in underground spaces. One of the key advantages of steel formwork is its ability to resist the pressure exerted by the surrounding soil and water. Underground structures often face high hydrostatic pressure, and steel formwork can easily withstand this pressure without deforming or collapsing. This ensures the safety and stability of the structure. Additionally, steel formwork is reusable, which makes it a cost-effective choice for underground construction projects. Its robustness allows it to withstand multiple uses, reducing the need for frequent replacements and lowering overall construction costs. Moreover, steel formwork offers flexibility in design and can be easily customized to meet specific project requirements. It can be fabricated into various shapes and sizes, allowing for the creation of complex geometries in underground structures. However, it is important to note that steel formwork requires proper surface treatment to protect it from corrosion in the underground environment. Special coatings or galvanization can be applied to prevent rusting and prolong the lifespan of the formwork. Overall, steel formwork is a suitable choice for underground structures due to its strength, durability, reusability, and flexibility in design. It can effectively withstand the challenges posed by the underground environment and ensure the long-term stability and safety of the structure.
Q: Can steel formwork be used for curved structures?
Yes, steel formwork can be used for curved structures. Steel is a versatile material that can be easily shaped and molded to form curved structures, making it suitable for creating curved formwork.
Q: What are the different types of ties used with steel formwork?
There are several types of ties commonly used with steel formwork, including snap ties, taper ties, she-bolts, wedge bolts, and pins. These ties help secure the formwork panels together and ensure the stability and strength of the structure being formed.
Q: How does steel formwork handle concrete temperature differentials?
Steel formwork is a popular choice for concrete construction due to its durability and strength. When it comes to handling concrete temperature differentials, steel formwork offers several advantages. Firstly, steel has a high coefficient of thermal conductivity, meaning it can quickly absorb and distribute heat. This property allows steel formwork to efficiently dissipate the heat generated during the hydration process of concrete. As a result, steel formwork helps to minimize the risk of thermal cracking caused by temperature differentials. Furthermore, steel formwork is known for its dimensional stability. Unlike other materials like wood, steel does not expand or contract significantly with temperature changes. This stability ensures that the formwork maintains its shape and integrity, even when exposed to varying concrete temperatures. It helps to prevent any distortions, warping, or bulging that could affect the quality and appearance of the concrete structure. Additionally, steel formwork is resistant to fire and high temperatures, making it suitable for handling concrete that undergoes rapid temperature changes, such as in hot weather conditions or during the curing process. Its ability to withstand extreme temperatures without deforming or losing its structural integrity ensures that the formwork remains intact and provides the necessary support and containment for the concrete. In summary, steel formwork effectively handles concrete temperature differentials by efficiently dissipating heat, maintaining dimensional stability, and withstanding high temperatures. These properties contribute to the overall quality and durability of the concrete structure, while minimizing the risk of thermal cracking and other issues caused by temperature variations.
Q: How does steel formwork affect the construction timeline?
Steel formwork can significantly impact the construction timeline in a positive way. Due to its durability and strength, steel formwork offers faster installation and removal compared to traditional timber formwork. This expedites the construction process, allowing for quicker concrete pouring and curing times. Additionally, steel formwork provides better dimensional accuracy and reusability, reducing the time required for adjustments and replacements. Overall, the use of steel formwork can help streamline construction activities, leading to shorter project durations and improved efficiency.
Q: What are the different types of form release agents used with steel formwork?
There exists a variety of form release agents that can be utilized in conjunction with steel formwork. These agents are applied to the formwork's surface prior to pouring concrete, serving the dual purpose of preventing adhesion to the steel and facilitating the removal of the formwork once the concrete has solidified. 1. Petroleum-based form release agents: This category represents the most frequently employed type for steel formwork. They are derived from petroleum oils and contain additives to enhance their effectiveness. These agents create a thin film on the steel's surface, preventing concrete from adhering to it. 2. Water-based form release agents: These agents offer an alternative to petroleum-based ones and are favored by some due to their eco-friendly properties. They consist of water, emulsifiers, and additives that form a barrier between the steel and concrete. Water-based agents are less volatile than their petroleum-based counterparts and are easy to clean. 3. Barrier release agents: Formulated with a combination of waxes, resins, and polymers, barrier release agents establish a physical barrier between the steel and concrete, deterring adhesion. They prove particularly useful when working with high-strength or self-consolidating concrete, which may possess a greater inclination to stick to the formwork. 4. Reactive release agents: These agents function by chemically reacting with the alkaline compounds in the concrete, resulting in the formation of a soap-like film that prevents adhesion. Reactive release agents are typically employed when a strong bond between the formwork and concrete is desired, as is the case with architectural concrete requiring a smooth surface finish. 5. Dry release agents: Typically in powder or granular form, dry release agents are applied to the steel formwork. They operate by absorbing moisture from the concrete, thereby creating a barrier between the formwork and concrete. Dry release agents are commonly utilized in situations where a liquid release agent could impede subsequent surface treatments, such as the application of decorative coatings. It is worth noting that the selection of a form release agent is contingent upon factors such as the type of steel formwork, the specific concrete being poured, the desired surface finish, and environmental considerations. It is advisable to seek professional advice or consult manufacturer guidelines in order to determine the most suitable form release agent for a particular project.
Q: How does steel formwork handle formwork stripping and demolding?
Steel formwork is known for its durability and strength, making it an excellent choice for handling formwork stripping and demolding. When it comes to the process of formwork stripping, steel formwork offers several advantages. Firstly, steel formwork is designed with a smooth surface, which allows for easy removal of the hardened concrete once it has cured. This smooth surface reduces the chances of concrete sticking to the formwork, making it easier to strip the formwork without causing any damage to the structure. Secondly, steel formwork is typically constructed with a system of joints and connections that facilitate efficient formwork stripping. These joints and connections are designed to be easily detachable, allowing for quick and straightforward removal of the formwork. This feature is particularly beneficial when working on large-scale construction projects where time is of the essence. Furthermore, steel formwork is highly resistant to deformation and warping, ensuring that the formwork remains in its original shape during the stripping process. This resistance to deformation helps to prevent any distortion or damage to the concrete structure during the demolding phase. In addition, steel formwork offers excellent reusability, which further contributes to its efficiency in handling formwork stripping and demolding. Once the formwork is stripped, it can be cleaned, repaired if necessary, and reused for subsequent concrete casting. This reusability not only saves time and money but also reduces the environmental impact associated with formwork disposal. Overall, steel formwork is designed to handle formwork stripping and demolding with ease. Its smooth surface, detachable joints, resistance to deformation, and reusability make it a reliable and efficient choice for construction projects.
Q: Can steel formwork be easily repaired in case of damage?
Yes, steel formwork can be easily repaired in case of damage. Steel is a highly durable and strong material, and any minor damages such as dents or scratches can be easily repaired through simple techniques like grinding or welding. Additionally, if there are major damages that require replacement of certain parts, steel formwork allows for easy disassembly and reassembly, making it a convenient option for repair work. The versatility of steel formwork ensures that it can be quickly repaired, minimizing downtime and costs associated with any damages.
Q: How does steel formwork handle different concrete shrinkage characteristics?
Steel formwork is a versatile and durable option for concrete construction projects, and it is designed to handle different concrete shrinkage characteristics effectively. Concrete shrinkage refers to the reduction in volume of the concrete as it dries and hardens. One of the main advantages of steel formwork is its strength and rigidity. Steel is a highly robust material that can withstand the pressure and forces exerted by the shrinking concrete. This ensures that the formwork remains intact and stable during the entire curing process, regardless of the concrete's shrinkage characteristics. Additionally, steel formwork is highly adjustable and can be easily modified to accommodate different concrete shrinkage rates. This flexibility allows contractors to adapt the formwork system to the specific needs of the project, ensuring that any potential issues related to shrinkage are effectively addressed. Moreover, steel formwork provides excellent support for the concrete during the curing process, minimizing the risk of cracking or deformation caused by shrinkage. Its smooth and non-absorbent surface helps to prevent excessive moisture loss from the concrete, which can contribute to increased shrinkage. By maintaining a controlled environment, steel formwork helps to regulate the drying process and reduce the overall shrinkage of the concrete. In summary, steel formwork is well-suited to handle different concrete shrinkage characteristics due to its strength, adjustability, and ability to provide optimal support and moisture control. This makes it a reliable and efficient choice for concrete construction projects, ensuring the integrity and longevity of the structure.
Q: How does steel formwork handle extreme weather conditions?
Steel formwork is highly resistant to extreme weather conditions. Unlike wooden formwork, steel formwork does not warp or expand due to changes in temperature or humidity. It can withstand intense heat, heavy rain, snow, and strong winds without losing its shape or structural integrity. This durability makes steel formwork a reliable choice for construction projects in areas prone to extreme weather conditions.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches