• Steel-frame Formwork working platform System 1
  • Steel-frame Formwork working platform System 2
Steel-frame Formwork working platform

Steel-frame Formwork working platform

Ref Price:
get latest price
Loading Port:
China Main Port
Payment Terms:
TT OR LC
Min Order Qty:
-
Supply Capability:
-

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Steel-frame Formwork SF-140


Characteristics:

◆ Few parts for fast forming.

◆ Max. Concrete pressure: 80KN/m2.

◆ Hot-dip galvanized steel frame.

◆ The thickness of plywood is 18mm & the panel is 14cm.

◆ Compatibility with Hunnebeck Manto system due to similar edge profile.


System Details & Application:

◆ Neat joint and fast assembling with aligning panel clamp.

◆ Flexible panel arrangement and height extension.

◆ The selection of panels.

◆ Kinds of panel connectors.

◆ Corner clamp application.

◆ Length adjustment application.

◆ Height adjustment & aligning strut.

◆ Walkway bracket & platform.





Q: What are the different types of access solutions available for steel formwork?
There are several different types of access solutions available for steel formwork, depending on the specific requirements of the construction project. Some of the common access solutions include: 1. Ladder Access: This is the most basic and commonly used access solution for steel formwork. Ladders are attached to the formwork structure, allowing workers to climb up and down easily. Ladder access is simple, cost-effective, and suitable for low-rise structures. 2. Stair Access: For taller structures, stair access is a safer and more convenient option. Stairs can be attached to the steel formwork, providing a stable and secure pathway for workers to move between different levels. Stair access is particularly useful in high-rise buildings or projects with multiple levels. 3. Platform Access: Platforms are often used in conjunction with ladders or stairs to provide a wider working area. These platforms can be fixed or movable, allowing workers to access various parts of the steel formwork system easily. Platforms provide a stable and safe working surface, enhancing productivity and safety on the construction site. 4. Scaffold Access: Scaffold systems are commonly used for construction projects and can also be utilized for accessing steel formwork. Scaffold access provides a flexible and adjustable solution, allowing workers to reach different heights and areas of the formwork structure. Scaffold access is particularly useful for complex projects or projects with irregular shapes. 5. Crane Access: In some cases, large steel formwork panels or structures may require the use of cranes for access. Cranes can lift workers to the desired height, providing a quick and efficient access solution. Crane access is often used for heavy-duty formwork systems or projects with large-scale structures. In summary, the different types of access solutions available for steel formwork include ladder access, stair access, platform access, scaffold access, and crane access. The choice of access solution depends on factors such as the height and complexity of the structure, as well as the specific requirements of the construction project.
Q: How does steel formwork affect the overall construction waste management?
Steel formwork is known for its durability and reusability, which can significantly impact the overall construction waste management in a positive way. Firstly, steel formwork can be reused multiple times, reducing the need for new formwork materials for each construction project. This reduces the amount of waste generated during construction, as well as the demand for raw materials, such as timber, which are often used in traditional formwork systems. Additionally, steel formwork is known for its high strength and stability, allowing for efficient and precise construction. This reduces the likelihood of errors or mistakes during the construction process, resulting in less rework and waste. Furthermore, steel formwork can be easily dismantled and reassembled, allowing for flexibility in design and construction, and minimizing waste that would otherwise be generated from fixed or permanent formwork systems. Moreover, steel formwork is recyclable at the end of its life cycle. Steel is one of the most recycled materials globally, and the recycling process for steel is energy-efficient and has minimal environmental impact. By choosing steel formwork, construction projects can contribute to a circular economy by ensuring that the materials used in construction can be recycled and reused rather than ending up in landfills. In conclusion, steel formwork positively affects overall construction waste management by reducing the amount of waste generated during construction, minimizing the demand for new materials, enabling efficient construction processes, and promoting recycling at the end of its life cycle. These advantages make steel formwork a sustainable choice for construction projects, helping to minimize environmental impact and promote responsible waste management practices.
Q: Can steel formwork be used in educational or institutional construction projects?
Yes, steel formwork can be used in educational or institutional construction projects. Steel formwork is commonly used in various construction projects, including those in the educational and institutional sectors. It provides a durable and versatile solution for casting concrete structures, ensuring the strength and stability required for these types of projects. Additionally, steel formwork allows for efficient construction processes, reducing the overall project duration and costs.
Q: Are there any specific quality control measures for steel formwork construction?
Steel formwork construction has specific quality control measures in place to guarantee compliance with standards and specifications, as well as to ensure its safety and reliability in construction projects. An important quality control measure involves inspecting the steel formwork materials prior to their use. This includes checking for defects, such as cracks, rust, or other damage, that may compromise the formwork's integrity and strength. Additionally, the materials must be checked for correct dimensions and smoothness to ensure proper fit and a smooth surface finish. Another measure involves inspecting the steel formwork during and after the construction process. This entails verifying that the formwork is properly assembled and secured, with all connections and joints aligned and tightened correctly. Furthermore, the formwork must be checked for signs of deformation, like bending or twisting, which could compromise its structural integrity. Apart from inspections, quality control measures also include testing the steel formwork to assess its strength and durability. This may involve conducting load tests to determine its maximum load capacity and evaluating its resistance to environmental factors such as corrosion, fire, and moisture. Documentation and record-keeping are also crucial quality control measures for steel formwork construction. This involves maintaining detailed records of inspections, tests, and any repairs or modifications made to the formwork. Such documentation ensures traceability of the construction process and allows for auditing if necessary. In conclusion, these quality control measures are vital to ensure that steel formwork construction is of high quality, meets the required standards, and provides a safe and reliable support system for concrete during construction.
Q: How does steel formwork affect the overall cost of concrete construction?
The overall cost of concrete construction can be greatly impacted by the use of steel formwork. Although the initial investment in steel formwork may be more expensive than traditional wood formwork, the long-term benefits and cost savings outweigh this initial expense. One of the key advantages of steel formwork is its durability and ability to be used multiple times. Unlike wood formwork, steel formwork can be reused, which reduces the need for frequent replacements and lowers material costs. Additionally, steel formwork is resistant to warping, shrinking, and swelling, ensuring that the concrete structure maintains its intended shape and dimensions. This saves both time and money by eliminating the need for rework and adjustments. The strength and stability of steel formwork also contribute to cost savings. It can withstand higher concrete pressures, allowing for the construction of taller and more complex structures without the need for extra reinforcements or additional support systems. This decreases the amount of materials required and minimizes labor costs. Moreover, steel formwork provides a smooth and even surface finish, reducing the need for additional surface treatments or finishes. This not only saves costs on materials but also speeds up construction time by eliminating the need for extensive surface preparation. Another cost-saving aspect is the ease of assembly and disassembly associated with steel formwork. The efficient design and standardized components of steel formwork make it quick and easy to install and dismantle, reducing labor costs and improving overall productivity. In summary, even though steel formwork may have a higher initial cost, its durability, reusability, strength, stability, and ease of use can lead to significant cost savings in terms of material, labor, and time. The efficiency and longevity of steel formwork make it a cost-effective choice for concrete construction projects.
Q: What are the common cost-saving strategies when using steel formwork?
There exist several commonly employed strategies for cost reduction when utilizing steel formwork in construction projects. 1. Reusability: Steel formwork's ability to be reused multiple times is one of its key advantages. By properly maintaining and storing the formwork after each use, it can be utilized for multiple projects, thereby lessening the need for new formwork and ultimately resulting in cost savings. 2. Durability: Steel formwork is renowned for its durability and long lifespan. It can withstand high pressures and be utilized for an extended duration compared to traditional formwork materials such as timber. This durability decreases the necessity for frequent repairs or replacements, leading to long-term cost savings. 3. Efficiency: Steel formwork facilitates faster and more efficient construction in comparison to traditional formwork methods. The ease of assembly and disassembly, coupled with the use of hydraulic systems, enables swifter construction cycles and reduces labor costs. Furthermore, the precision and accuracy of steel formwork ensure minimal material wastage, further contributing to cost savings. 4. Safety: Steel formwork provides enhanced safety features when compared to other formwork materials. It offers stability and structural integrity, thereby reducing the risk of accidents during the construction process. A safer working environment translates to lower insurance costs and potential legal liabilities, resulting in cost savings. 5. Reduced labor costs: Steel formwork is typically lighter and easier to handle than alternative materials. This diminishes the number of workers required for installation and removal. Additionally, the speed and efficiency of steel formwork result in reduced labor hours, leading to cost savings. 6. Lower maintenance costs: Steel formwork necessitates minimal maintenance when compared to other formwork materials. Regular cleaning and appropriate storage are typically sufficient to maintain its performance. This eliminates the need for expensive maintenance or repairs, resulting in cost savings over time. 7. Improved quality: Steel formwork ensures consistent quality in construction. It provides accurate dimensions and smooth finishes, reducing the need for additional finishing work. This saves both time and money, as there is no requirement for additional materials or labor to rectify imperfections. In conclusion, the employment of steel formwork in construction projects allows for numerous cost-saving strategies, including reusability, durability, efficiency, safety, reduced labor costs, lower maintenance costs, and improved quality. By considering and implementing these strategies, construction projects can optimize their budget and achieve significant cost savings.
Q: What are the different steel grades used in steel formwork?
There are several different steel grades that are commonly used in steel formwork, each with their own specific characteristics and advantages. Some of the most common steel grades used in steel formwork include: 1. Mild Steel (Grade 250): Mild steel is a low carbon steel that is relatively inexpensive and easy to work with. It offers good strength and durability, making it suitable for many construction applications. However, it may not have the same level of resistance to corrosion as other steel grades. 2. High Tensile Steel (Grade 500): High tensile steel is a type of steel that has a higher strength-to-weight ratio compared to mild steel. It offers superior strength and durability, making it suitable for heavy-duty applications. High tensile steel is often used in formwork for structures that require greater load-bearing capacity. 3. Stainless Steel: Stainless steel is a corrosion-resistant alloy that contains a minimum of 10.5% chromium. It offers excellent resistance to corrosion, making it ideal for formwork that will be exposed to harsh environmental conditions or chemicals. Stainless steel also has a high strength-to-weight ratio and is often used in marine and chemical industry applications. 4. Weathering Steel (Grade 350): Weathering steel, also known as corten steel, is a high-strength, low-alloy steel that forms a protective layer of rust when exposed to the elements. This protective layer helps to prevent further corrosion, making it suitable for formwork in outdoor environments. Weathering steel is often used in bridge construction and other infrastructure projects. 5. Galvanized Steel: Galvanized steel is steel that has been coated with zinc to provide protection against corrosion. The zinc coating acts as a barrier, preventing moisture and oxygen from reaching the underlying steel. Galvanized steel formwork is commonly used in concrete construction, as it offers excellent corrosion resistance and durability. Overall, the choice of steel grade for steel formwork will depend on various factors including the specific application, load-bearing requirements, and environmental conditions. It is important to select the appropriate steel grade to ensure the longevity and performance of the formwork system.
Q: What are the common design considerations for steel formwork in tunnel construction?
Some common design considerations for steel formwork in tunnel construction include the strength and stability of the formwork, the ability to withstand the pressure of the surrounding soil or rock, the ease of installation and removal, the compatibility with other construction materials and techniques, and the potential for reuse or recycling. Additionally, considerations such as cost, safety, and environmental impact may also play a role in the design process.
Q: What are the different types of formwork anchors used in steel formwork?
There are several types of formwork anchors that are commonly used in steel formwork. These anchors are essential for securing the formwork to the structure and ensuring the stability and safety of the construction process. Some of the different types of formwork anchors used in steel formwork include: 1. Wedge Anchor: This type of anchor consists of a threaded rod with a wedge-shaped end. It is inserted into a pre-drilled hole in the concrete structure and secured by tightening a nut on the threaded end. The wedge anchor provides a strong grip and is commonly used for securing formwork to concrete walls or slabs. 2. Screw Anchor: Screw anchors, also known as self-tapping anchors, are designed for use in softer materials such as wood or light-gauge steel. They have a threaded body that is screwed into the material, providing a secure connection for the formwork. Screw anchors are easy to install and remove, making them a popular choice for temporary formwork applications. 3. Hook Anchor: This type of anchor is shaped like a hook and is typically embedded into the concrete structure during the pouring process. The formwork is then attached to the hook using bolts or other fasteners. Hook anchors provide a strong and reliable connection and are commonly used in applications where high loads or lateral forces are expected. 4. Swift Lift Anchor: Swift lift anchors are specifically designed for lifting and handling precast concrete elements, including steel formwork. These anchors are embedded into the structure during the pouring process and provide a safe and efficient method for lifting and positioning the formwork. 5. Plate Anchor: Plate anchors consist of a flat plate with holes for bolts or other fasteners. They are commonly used in steel formwork systems to secure the formwork to the structure. Plate anchors are versatile and can be easily adjusted or relocated as needed. 6. Chemical Anchor: Chemical anchors are used when a strong and permanent connection is required. These anchors consist of a resin or adhesive that is injected into a pre-drilled hole in the concrete structure. The steel formwork is then attached to the chemical anchor, creating a secure bond. Each type of formwork anchor has its own unique advantages and is suitable for different applications. The choice of anchor will depend on factors such as the type of structure, the load requirements, and the duration of use. It is important to select the appropriate anchor and ensure proper installation to ensure the safety and stability of the formwork system.
Q: How does steel formwork handle different concrete surface finishing options?
Steel formwork is a versatile and durable option for creating concrete structures, and it is capable of handling different concrete surface finishing options with ease. The smooth and rigid surface of steel formwork allows for various finishing techniques to be applied to the concrete, resulting in different textures and appearances. One common concrete surface finishing option is a smooth finish, which is achieved by using steel formwork that is well-maintained and properly aligned. The smooth surface of the steel formwork transfers onto the concrete, resulting in a sleek and polished finish that is often desired for architectural and decorative purposes. Another option is a textured finish, which can be achieved by using steel formwork with patterns or textures imprinted onto it. The concrete takes on the texture of the steel formwork, creating a visually appealing and unique surface. Steel formwork also allows for the application of various coatings and treatments to the concrete surface. For example, a steel formwork can be coated with a release agent prior to pouring the concrete, which helps in achieving a smooth finish and easy removal of the formwork. Additionally, the steel formwork can be treated with a curing compound or sealant to enhance the durability and appearance of the concrete surface. Overall, steel formwork provides a reliable and adaptable solution for handling different concrete surface finishing options. Its strength and rigidity allow for the creation of smooth, textured, and coated finishes, giving flexibility to architects and contractors in achieving the desired aesthetic and functional requirements of the concrete structure.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords