• Carbon Additve Low Sulphur for Steelmaking System 1
  • Carbon Additve Low Sulphur for Steelmaking System 2
  • Carbon Additve Low Sulphur for Steelmaking System 3
Carbon Additve Low Sulphur for Steelmaking

Carbon Additve Low Sulphur for Steelmaking

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT or LC
Min Order Qty:
20 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 

Quick Details

  • Place of Origin: Ningxia, China (Mainland)

  • Application: steel making

  • Shape: granule

  • Dimensions: FC90-95%

  • Product Type: Carbon Additive

  • C Content (%): 90-95% MIN

  • Working Temperature: -

  • S Content (%): 0.5%MAX

  • N Content (%): -

  • H Content (%): 0.6%MAX

  • Ash Content (%): 8.5%MAX

  • Volatile: 2%MAX

  • ADVANTAGE: low ash & sulfur

  • COLOR: Black

  • RAW MATERIAL: TaiXi anthracite

Packaging & Delivery

Packaging Details:In 1MT plastic woven bag.
Delivery Detail:30-40DAYS

 

Specifications 

Carbon Additve Low Sulphur for Steelmaking

Carbon Additve low Ash,S,P 
FC>95% ASH<4% S<0.3% 
It is made from TaiXi anthracite.
instead of pertrol coke reduce the cost 

Structure

Carbon Additve Low Sulphur for Steelmaking

Shape: granule

  • Dimensions: FC90-95%

  • Product Type: Carbon Additive

  • C Content (%): 90-95% MIN

  • Working Temperature: -

  • S Content (%): 0.5%MAX

  • N Content (%): -

  • H Content (%): 0.6%MAX

  • Ash Content (%): 8.5%MAX

  • Volatile: 2%MAX

  • ADVANTAGE: low ash & sulfur

  • COLOR: Black

  • RAW MATERIAL: TaiXi anthracite

Feature

Carbon Additve Low Sulphur for Steelmaking

 

Specifications (%):

Grade

 F.C

 Ash

 V.M

 Moisture

 S

Size

CR-95

≥95

<4

<1

<1

<0.3

0-30mm 
As buyer's request.

CR-94

≥94

<4

<1

<1

<0.3

CR-93

≥93

<6

<1

<1

<0.4

CR-92

≥92

<7

<1

<1

<0.4

CR-91

≥91

<8

<1

<1

<0.4

CR-90

≥90

<8.5

<1.5

<2

<0.4

 

 Image

Carbon Additve Low Sulphur for Steelmaking

 

 

FAQ:

 

 

Carbon Additve Low Sulphur for Steelmaking

Why we adopt carbon additive?

Carbon Additives used as additive in steel making process. It made from well-selected Tai Xi anthracite which is low in content of ash, sulphur, phosphorus, high heat productivity, high chemically activation.

 

Mainly industry property of it is: instead of traditional pertroleum coal of Carbon Additives, reduce the cost of steelmaking.

Advantage:

Carbon Additve Low Sulphur for Steelmaking

1.High quality and competitive price.

2.Timely delivery.

3.If any item you like. Please contact us.

Your sincere inquiries are typically answered within 24 hours.

Q: How does carbon monoxide affect air quality and human health?
Carbon monoxide (CO) is a colorless, odorless gas that can have detrimental effects on both air quality and human health. It is primarily released into the atmosphere through incomplete combustion of fossil fuels and biomass burning. In terms of air quality, high levels of carbon monoxide contribute to the formation of ground-level ozone and smog, which can impair visibility and cause respiratory issues. When it comes to human health, carbon monoxide is particularly concerning as it binds to hemoglobin in our red blood cells, preventing oxygen from being delivered to vital organs and tissues. This can lead to symptoms such as headaches, dizziness, confusion, and in severe cases, even death. Individuals with cardiovascular and respiratory conditions, as well as unborn babies and the elderly, are especially vulnerable to the harmful effects of carbon monoxide exposure. Therefore, proper ventilation and the use of carbon monoxide detectors are crucial to prevent its accumulation and protect both air quality and human health.
Q: What are the different types of carbon-based polymers?
There are several different types of carbon-based polymers, each with its own unique properties and applications. Some of the most common types include: 1. Polyethylene (PE): This is one of the most widely used polymers and is known for its high strength and chemical resistance. It is commonly used in packaging materials, plastic bottles, and pipes. 2. Polypropylene (PP): PP is similar to PE but with a higher melting point and better resistance to heat. It is commonly used in automotive parts, textiles, and food packaging. 3. Polystyrene (PS): PS is a lightweight and rigid polymer that is commonly used in packaging materials, disposable utensils, and insulation. 4. Polyvinyl chloride (PVC): PVC is a versatile polymer that can be rigid or flexible depending on the additives used. It is commonly used in pipes, electrical insulation, and flooring. 5. Polyethylene terephthalate (PET): PET is a strong and lightweight polymer that is commonly used in beverage bottles, food containers, and synthetic fibers. 6. Polyurethane (PU): PU is a flexible and durable polymer that is commonly used in foams, coatings, adhesives, and textiles. 7. Polycarbonate (PC): PC is a strong and transparent polymer that is commonly used in eyeglass lenses, safety goggles, and electronic components. 8. Phenolic resins: These polymers are known for their excellent heat resistance and are commonly used in coatings, adhesives, and electrical components. These are just a few examples of the many carbon-based polymers that exist. Each type has its own specific properties and applications, making them suitable for a wide range of industries and products.
Q: What should be done to deal with leakage of carbon monoxide from the plant?
The hazardous and dangerous characteristics of carbon monoxide, carbon monoxide, is the Chinese name of CO. It is the product of incomplete combustion of materials. It is slightly soluble in water and soluble in various organic solvents such as ethanol and benzene. Mainly used in industrial chemical synthesis, such as synthetic methanol, phosgene, etc., or refined metal reducer. Occupation exposure to carbon monoxide in manufacturing steel and iron, coke, ammonia, methanol, graphite electrode, printing and dyeing factory, singeing, internal combustion engine powered coal mining blasting; non occupation contact is more extensive, such as household water heater was boiling water, winter coal, gas heating and so on, will produce carbon monoxide. Carbon monoxide is a flammable toxic gas known, but because of its physical and chemical properties of colorless smelly, so it is not easy to be aware of the harm, so it is not only the occupation killer, or the people's daily living potential. Carbon monoxide mixed with air can form an explosive mixture. When exposed to fire, high heat can cause combustion and explosion. Bottled carbon monoxide in case of high fever, increased pressure within the container, cracking and explosion. Because carbon monoxide has flammable properties, strong oxidizing agents and alkalis are its inhibitions. If the fire, should immediately cut off the gas source; if not immediately cut off the gas source, is not allowed to extinguish the burning gas.
Q: What are the effects of carbon dioxide on ocean acidity?
Carbon dioxide can significantly increase the acidity of the oceans, a process known as ocean acidification. As CO2 dissolves in seawater, it reacts with water molecules, forming carbonic acid. This acidification negatively impacts marine life, particularly organisms that rely on calcium carbonate to build their shells or skeletons, such as coral reefs, mollusks, and some plankton species. The increased acidity can hinder the ability of these organisms to form and maintain their structures, ultimately disrupting entire marine ecosystems and biodiversity.
Q: Advantages of carbon fiber
Carbon fiber has excellent properties of elemental carbon, such as small proportion, excellent heat resistance, small thermal expansion coefficient, high thermal conductivity, good corrosion resistance and good conductivity. At the same time, it has a kind of fiber like flexibility, which can be woven and wrapped. The best performance of carbon fiber is that the specific strength and specific modulus are more than that of general reinforcement fiber.
Q: What is carbon coffee fiber?
The carbon coffee fiber uses the coffee residue left after the coffee and is made into crystal by calcining, then ground into nanometer powder and added to the polyester fiber to produce a functional polyester staple, a coffee carbon fiber.
Q: How do you remove the carbon stains on your clothes?
1, first pour alcohol on clothes, fountain pen scratches, every scratch should be evenly covered with alcohol, alcohol should be used at a concentration of not less than 75% of the medical alcohol.2, pour the clothes down, put this side of the alcohol up, try not to touch other surfaces of the clothes, otherwise, the color of the pen or ballpoint pen may be stained with other parts of the clothes.3, with ordinary washbasin, ready most of the basin of water, and then will be full of two bottles of bleach water poured in the water, pay attention to must be full two bottle cap.4, take a stir, and then add a little washing powder, this amount can be mastered.5, after a little mixing, so that washing powder can be fully dissolved in water. Well, now soak your clothes in water for twenty minutes.
Q: How can carbon capture and storage help reduce greenhouse gas emissions?
Carbon capture and storage (CCS) is a technology that can play a significant role in reducing greenhouse gas emissions. It involves capturing carbon dioxide (CO2) produced from industrial processes or power generation, transporting it, and then storing it underground in geological formations. Firstly, CCS can help reduce greenhouse gas emissions by capturing CO2 directly from large point sources, such as power plants or industrial facilities, that would otherwise be released into the atmosphere. By capturing and storing this CO2, it prevents it from contributing to the greenhouse effect and mitigates its impact on climate change. Secondly, CCS can enable the continued use of fossil fuels, such as coal or natural gas, in a more environmentally friendly manner. These fuels are currently the primary sources of energy for electricity generation and industrial processes. By implementing CCS, the CO2 emissions from these fossil fuel-based activities can be drastically reduced, allowing for a transition towards cleaner energy sources in a more gradual and economically feasible manner. Furthermore, CCS can also be coupled with bioenergy production, creating what is known as bioenergy with carbon capture and storage (BECCS). This process involves using biomass, such as crop residues or purpose-grown energy crops, to produce energy. The CO2 emitted during the bioenergy production is then captured and stored, resulting in a negative emissions process. BECCS can effectively remove CO2 from the atmosphere, helping to offset emissions from other sectors and achieving net-negative emissions. Lastly, CCS can contribute to the decarbonization of hard-to-abate sectors, such as cement and steel production, where alternative low-carbon technologies are currently limited. By capturing and storing CO2 emissions from these sectors, CCS can significantly reduce their overall greenhouse gas emissions and facilitate their transition towards more sustainable practices. In conclusion, carbon capture and storage technology can help reduce greenhouse gas emissions by directly capturing and storing CO2 from large point sources, allowing for the continued use of fossil fuels in a more sustainable manner, enabling the deployment of negative emissions technologies like BECCS, and supporting the decarbonization of hard-to-abate sectors. Implementing CCS alongside other mitigation strategies can play a vital role in achieving global climate goals and combating climate change.
Q: What are the applications of graphite in industry?
Graphite has numerous applications in various industries due to its unique properties. Here are some of the key applications of graphite in industry: 1. Lubricants: Graphite is widely used as a solid lubricant in industry due to its low friction coefficient. It is commonly used in applications where high temperatures and extreme pressures are present, such as in the automotive, aerospace, and heavy machinery industries. 2. Refractories: Graphite is highly resistant to heat and chemical reactions, making it an ideal material for manufacturing refractory products. Its use in refractories helps to line furnaces, crucibles, and other high-temperature equipment used in metal production, glass manufacturing, and chemical processing. 3. Electrical industry: Graphite is an excellent conductor of electricity, and it is widely used in the electrical industry. It is used to manufacture electrodes, brushes, and contacts for electrical motors, generators, and batteries. Graphite is also used as a component in various electrical applications, such as electrical discharge machining (EDM) and as a conductive filler in conductive paints and coatings. 4. Foundry industry: Graphite is used as a mold and core material in the foundry industry. Its high thermal conductivity and ability to withstand high temperatures make it suitable for casting applications. Graphite molds can be used for various metal casting processes, including sand casting, investment casting, and continuous casting. 5. Chemical industry: Graphite is used in the chemical industry due to its resistance to corrosion and high temperatures. It is used in the manufacture of chemical equipment, such as heat exchangers, reactors, and pipes, where it can withstand aggressive chemical environments. 6. Nuclear industry: Graphite is utilized in the nuclear industry as a moderator in nuclear reactors. Its ability to slow down neutrons allows for controlled nuclear fission reactions. Additionally, graphite is also used as a structural material in some types of nuclear reactors. 7. Composite materials: Graphite is commonly used as a reinforcement material in the production of composite materials. Graphite fibers or sheets are combined with other materials, such as resins or metals, to create lightweight and high-strength composites used in aerospace, automotive, and sporting goods industries. Overall, graphite's unique properties, including its high thermal conductivity, electrical conductivity, lubricity, and chemical inertness, make it a versatile material with applications in various industries.
Q: How does carbon impact the quality of freshwater systems?
Carbon can have a significant impact on the quality of freshwater systems. One of the main ways carbon affects these systems is through the process of carbon dioxide (CO2) emissions. When excess CO2 is released into the atmosphere, it can dissolve in rainwater and form carbonic acid. This acidification of freshwater bodies can lower the pH levels, making the water more acidic. High levels of acidity can be detrimental to many freshwater organisms, including fish, amphibians, and invertebrates. It can disrupt their reproductive systems, impair their growth and development, and even lead to the death of these organisms. Additionally, increased acidity can also affect the availability of essential nutrients in the water, further impacting the health and survival of aquatic life. Another way carbon impacts freshwater systems is through the process of eutrophication. Excess carbon can enter freshwater bodies through runoff from agricultural fields or wastewater treatment plants. This excess carbon acts as a nutrient, fueling the growth of algae and other aquatic plants. As these plants proliferate, they can create dense mats on the water's surface, blocking sunlight and depleting oxygen levels. The depletion of oxygen can lead to hypoxia, a condition where oxygen levels become dangerously low, resulting in the death of fish and other organisms. Additionally, the excess growth of algae can lead to algal blooms, which can release toxins into the water, further impacting the quality of freshwater systems. Furthermore, carbon can also impact the temperature of freshwater systems. Increased levels of carbon dioxide in the atmosphere contribute to global warming, which raises the overall temperature of the planet. As a result, freshwater systems may experience higher water temperatures, leading to changes in the ecosystem. Some species may struggle to adapt to these warmer conditions, while others, such as invasive species, may thrive. In conclusion, carbon has a significant impact on the quality of freshwater systems. It can lead to acidification, eutrophication, and changes in temperature, all of which have detrimental effects on the health and survival of aquatic organisms. Addressing carbon emissions and reducing our carbon footprint is crucial in protecting the integrity of freshwater systems and ensuring their long-term sustainability.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches