• Carbon Additve Low Ash sulphur for Steelmaking System 1
  • Carbon Additve Low Ash sulphur for Steelmaking System 2
  • Carbon Additve Low Ash sulphur for Steelmaking System 3
Carbon Additve Low Ash sulphur for Steelmaking

Carbon Additve Low Ash sulphur for Steelmaking

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT or LC
Min Order Qty:
20 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 

Quick Details

  • Place of Origin: Ningxia, China (Mainland)

  • Application: steel making

  • Shape: granule

  • Dimensions: FC90-95%

  • Product Type: Carbon Additive

  • C Content (%): 90-95% MIN

  • Working Temperature: -

  • S Content (%): 0.5%MAX

  • N Content (%): -

  • H Content (%): 0.6%MAX

  • Ash Content (%): 8.5%MAX

  • Volatile: 2%MAX

  • ADVANTAGE: low ash & sulfur

  • COLOR: Black

  • RAW MATERIAL: TaiXi anthracite

Packaging & Delivery

Packaging Details:In 1MT plastic woven bag.
Delivery Detail:30-40DAYS

 

Specifications 

Carbon Additve Low Ash Sulphur for Steelmaking

Carbon Additve low Ash,S,P 
FC>95% ASH<4% S<0.3% 
It is made from TaiXi anthracite.
instead of pertrol coke reduce the cost 

Structure

Carbon Additve Low Ash Sulphur for Steelmaking

Shape: granule

  • Dimensions: FC90-95%

  • Product Type: Carbon Additive

  • C Content (%): 90-95% MIN

  • Working Temperature: -

  • S Content (%): 0.5%MAX

  • N Content (%): -

  • H Content (%): 0.6%MAX

  • Ash Content (%): 8.5%MAX

  • Volatile: 2%MAX

  • ADVANTAGE: low ash & sulfur

  • COLOR: Black

  • RAW MATERIAL: TaiXi anthracite

Feature

Carbon Additve Low Ash Sulphur for Steelmaking

 

Specifications (%):

Grade

 F.C

 Ash

 V.M

 Moisture

 S

Size

CR-95

≥95

<4

<1

<1

<0.3

0-30mm 
As buyer's request.

CR-94

≥94

<4

<1

<1

<0.3

CR-93

≥93

<6

<1

<1

<0.4

CR-92

≥92

<7

<1

<1

<0.4

CR-91

≥91

<8

<1

<1

<0.4

CR-90

≥90

<8.5

<1.5

<2

<0.4

 

 Image

Carbon Additve Low Ash Sulphur for Steelmaking

 

FAQ:

 

 Carbon Additve Low Ash Sulphur for Steelmaking

Why we adopt carbon additive?

Carbon Additives used as additive in steel making process. It made from well-selected Tai Xi anthracite which is low in content of ash, sulphur, phosphorus, high heat productivity, high chemically activation.

 

Mainly industry property of it is: instead of traditional pertroleum coal of Carbon Additives, reduce the cost of steelmaking.

Advantage:

Carbon Additve Low Ash Sulphur for Steelmaking

1.High quality and competitive price.

2.Timely delivery.

3.If any item you like. Please contact us.

Your sincere inquiries are typically answered within 24 hours.

Q: Are carbon fibers organic polymer materials?
No, carbon fiber is not an organic polymer material, and carbon fiber is an inorganic polymer materialOrganic polymer compounds referred to as polymer compound or polymer, also known as polymer is composed of one or several structural units repeatedly (103~105) compound repeat connected. Their elements are not many, mainly carbon, hydrogen, oxygen and nitrogen, but the molecular weight is large, generally above 10000, high millions.
Q: Want advanced reinforcement, but I do not know where the high furnace rock carbon, looking for someone to guide...
Mall. In fact, BUG can be card out! Inside the palace there is that BUG, but I personally think that no use, I used to strengthen the use of advanced carbon weapons on 12, even 3 did not become a storm, this is only the way to make money TX it
Q: What are the consequences of increased carbon emissions on political stability?
Political stability can be significantly affected by the increase in carbon emissions. Environmental challenges and natural disasters are intensified as a result. The frequency and intensity of extreme weather events, such as hurricanes, droughts, and flooding, are increased due to carbon emissions contributing to global warming. These disasters have the potential to displace communities, destroy infrastructure, and result in loss of life, all of which can destabilize societies. Furthermore, the economic consequences of increased carbon emissions can also lead to political instability. Climate change affects vital sectors such as agriculture, water resources, and energy production, causing economic disturbances, unemployment, and rising food prices. These hardships can fuel social unrest, protests, and even conflicts, particularly in countries heavily reliant on these sectors for their livelihoods. Moreover, increased carbon emissions can exacerbate existing social and political tensions. Vulnerable populations, including marginalized groups and communities in developing countries, are disproportionately affected by climate change. This inequality can worsen social disparities, increase social unrest, and result in political instability as marginalized communities demand action and justice. Additionally, addressing the global issue of climate change requires international cooperation and agreements. However, increased carbon emissions can strain diplomatic relations, especially between countries with differing views on climate action. Disagreements over carbon reduction targets, carbon trading mechanisms, and financial contributions can create diplomatic tensions and hinder global cooperation, ultimately impacting political stability. In conclusion, the consequences of increased carbon emissions have wide-ranging effects on political stability. From environmental challenges and natural disasters to economic disturbances and social tensions, carbon emissions strain societies and governments. To ensure political stability, it is crucial to make global efforts to reduce carbon emissions and mitigate the impacts of climate change.
Q: Does anyone know what the definition of carbon storage is in ecology? Thank you
It's not 12g's problem, it's carbon selection.If oxygen is selected, it is not 12g, but it must be 16g.So why choose carbon atoms instead of other atoms?(Note: this carbon atom must have 6 protons and 6 neutrons. The following is called C-12. Of course, there are 6 protons and 7 neutrons, or 8 neutrons carbon atoms, but can not be usedI refer to other information stored on the computer, but I can't remember the source.The reason why C-12 is used as the relative atomic mass standards are as follows: (1) the formation of many high quality carbon molecular ion and hydride, for mass spectrometry; (2) 12C is easily measured in a mass spectrometer, using mass spectrometer to determine the relative atomic mass is the most accurate method of modern (3); after using C-12, the relative atomic mass of all elements have little change, only 0.0043% less than in the past; (4) the carbon atom is stable in natural abundance; (5) the carbon in nature is widely distributed and its compounds especially organic compounds is various; (6) the minimum density of hydrogen is relative atomic mass not less than 1.The absolute mass of an atom is very small, and if expressed in kilograms, it is very inconvenient. Thus, 1/12, the quality of such a carbon atom, is used as a standard, and the mass of other atoms is the relative atomic mass of this atom
Q: Paint paint fluorocarbon paint which expensive?
Teflon (Tie Fulong) coating is a kind of high performance coating is the one and only, with heat resistance, chemical inertness and excellent insulation stability and low friction, the comprehensive advantages with other coatings can not compete, the flexibility makes it can be used in almost all the shape and size of the products.Fluorocarbon paint is a kind of coating with fluorine resin as its main film forming material. It is also called fluorocarbon paint, fluorine coating and fluorine resin coating. In a variety of coating, fluorocarbon resin coatings due to the introduction of fluorine element electronegativity, fluorocarbon bond energy, has the good performance. Weather resistance, heat resistance, low temperature resistance, chemical resistance, but also has a unique non sticky and low friction.
Q: How is carbon used in the production of fertilizers?
Carbon is used in the production of fertilizers as it serves as an essential component in the synthesis of organic fertilizers. Carbon-based materials, such as compost, manure, and plant residues, are used to create organic fertilizers through a process called decomposition or composting. These organic fertilizers, rich in carbon, provide plants with necessary nutrients and improve soil fertility, ultimately promoting healthy plant growth and productivity.
Q: Organic matter is converted from organic carbon. Why is humus represented by carbon instead of converted?
Soil organic matter refers to all organic matter in the soil, due to the size of the organic matter content of different soil in a composition is more complex, but are not necessarily organic carbon containing material, so there is a mathematical relationship between soil organic matter and organic carbon. In general, we are the first to measure the content of soil organic carbon, and then use the formula to convert the content of organic matter.
Q: How does carbon affect the electrical conductivity of materials?
Carbon can significantly affect the electrical conductivity of materials due to its unique electronic properties. Carbon atoms, when bonded together in a specific arrangement, can form different allotropes such as graphite, diamond, and fullerenes, each with distinct electrical conductive properties. Graphite, for example, is composed of layers of carbon atoms arranged in a hexagonal lattice structure. Within each layer, carbon atoms form strong covalent bonds, resulting in a stable structure. However, between the layers, weak van der Waals forces exist, allowing for easy movement of electrons in the plane of the layers. This delocalization of electrons in graphite leads to its high electrical conductivity, as the free electrons can move freely and carry electrical charges. On the other hand, diamond, another allotrope of carbon, has a three-dimensional covalent network structure. In this structure, each carbon atom forms four strong covalent bonds with its neighboring atoms, resulting in a highly rigid and stable lattice. The absence of free electrons in diamond restricts the movement of electrical charges, making it an insulator. Fullerenes, which are spherical carbon molecules, can have varying electrical conductive properties depending on their structure. Some fullerenes can behave as semiconductors, meaning their electrical conductivity can be manipulated by introducing impurities or applying external stimuli. In addition to these allotropes, carbon can also be used as a dopant in certain materials to enhance their electrical conductivity. For instance, doping silicon with small amounts of carbon can improve its electrical conductivity, resulting in materials suitable for electronic devices. Overall, carbon's influence on electrical conductivity is highly dependent on its structure and arrangement within a material. Understanding the different forms and properties of carbon can help engineers and scientists design materials with desired electrical conductive characteristics for various applications.
Q: Wrought iron, steel, cast iron, cast iron, according to the content of the carbon? How many?
According to the carbon content, but not all. The wrought iron should be called industrial pure iron, the carbon content is below 0.02%, the carbon content of steel at 0.02-2.11%, the carbon content of pig iron in about 2.5-4.3%, and the carbon content of iron in 2.11-4%.
Q: How does carbon impact the availability of clean energy solutions?
The availability of clean energy solutions is significantly affected by carbon. Climate change, caused mainly by carbon emissions from burning fossil fuels and human activities, poses a serious threat to the environment and human well-being. Therefore, there is an urgent need to transition to cleaner energy sources that emit less carbon. Clean energy solutions, such as solar and wind power, have the potential to greatly reduce carbon emissions. These energy sources generate electricity without burning fossil fuels, resulting in minimal to no carbon emissions. By replacing traditional energy sources with clean alternatives, we can decrease our carbon footprint and mitigate climate change. However, the presence of carbon emissions impacts the availability and scalability of clean energy solutions in multiple ways. Firstly, the continued dependence on carbon-intensive energy sources, like coal and oil, hampers the rapid adoption of clean energy technologies. The existing infrastructure and investments in fossil fuel-based energy systems make it challenging to transition to clean alternatives. Secondly, carbon emissions contribute to global warming, which affects the availability and efficiency of certain clean energy solutions. For instance, higher temperatures can decrease the effectiveness of solar panels and affect the output of hydropower due to changes in rainfall patterns. This emphasizes the significance of reducing carbon emissions to ensure the long-term viability and efficacy of clean energy technologies. Moreover, carbon emissions have economic implications that can influence the availability of clean energy solutions. Governments and policymakers play a crucial role in encouraging the adoption of clean energy through regulations, subsidies, and carbon pricing mechanisms. These policies can impact the affordability and accessibility of clean energy technologies, making them more appealing to investors and consumers. In conclusion, carbon emissions have a profound impact on the availability of clean energy solutions. By reducing carbon emissions and transitioning to cleaner energy sources, we can mitigate climate change, enhance the efficiency of clean energy technologies, and create a more sustainable future. It is crucial for governments, businesses, and individuals to prioritize the development and adoption of clean energy solutions to ensure a cleaner and healthier planet for future generations.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches