FC 93Min Calcined Anthracite Coal Steel-Making Use
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 0 m.t.
- Supply Capability:
- 20000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Specifications
Calcined Anthracite Coal
Fixed carbon: 90%-95%
S: 0.5% max
Size: 0-3. 3-5.3-15 or as request
Product Description
Calcined Anthracite coal is produced using the best Anthracite-Taixi Anthracite with low S and P, It is widely used in steel making and casting.
General Specification
PARAMETER UNIT GUARANTEE VALUE | |||||
F.C.% | 95MIN | 94MIN | 93MIN | 92MIN | 90MIN |
ASH % | 4MAX | 5MAX | 6MAX | 7MAX | 8MAX |
V.M.% | 1 MAX | 1MAX | 1.5MAX | 1.5MAX | 1.5MAX |
SULFUR % | 0.5MAX | 0.5MAX | 0.5MAX | 0.5MAX | 0.5MAX |
MOISTURE % | 0.5MAX | 0.5MAX | 0.5MAX | 0.5MAX | 0.5MAX |
Size can be adjusted based on buyer's request
Pictures
- Q:What is the carbon footprint?
- The carbon footprint is a measure of the total greenhouse gas emissions, especially carbon dioxide, produced directly and indirectly by an individual, organization, event, or product. It represents the impact of human activities on climate change and is usually expressed in metric tons of carbon dioxide equivalent per year.
- Q:What are the health effects of carbon pollution?
- The health impacts of carbon pollution, specifically carbon dioxide (CO2) emissions, are wide-ranging and affect both humans and the environment. The primary concern regarding carbon pollution is its contribution to climate change. Because CO2 is a greenhouse gas, it traps heat in the Earth's atmosphere. This leads to global warming and alters weather patterns. As a result, heatwaves, hurricanes, and other extreme weather events become more frequent and severe. These events have direct and indirect effects on health, including heat-related illnesses, injuries, displacement, and the spread of infectious diseases. Furthermore, carbon pollution is closely connected to air pollution, which has significant health consequences. Burning fossil fuels like coal and oil not only releases CO2 but also toxic air pollutants such as sulfur dioxide, nitrogen oxides, particulate matter, and volatile organic compounds. These pollutants can cause respiratory problems like asthma, bronchitis, and other chronic obstructive pulmonary diseases (COPD). They can also trigger cardiovascular issues, increasing the risk of heart attacks and strokes. The health impacts of carbon pollution are not limited to the respiratory and cardiovascular systems. Increased temperatures and changes in precipitation patterns can also affect water and food supplies. This can lead to waterborne diseases, reduced crop yields, malnutrition, and food insecurity. Moreover, carbon pollution has environmental consequences that further worsen health risks. Deforestation reduces clean air availability and the natural carbon sinks that absorb CO2. Ocean acidification damages marine ecosystems, affecting the availability of fish and other seafood, which are essential sources of nutrition for many communities. To minimize the health effects of carbon pollution, it is crucial to reduce greenhouse gas emissions. This can be achieved by transitioning to cleaner and renewable energy sources, implementing energy-efficient practices, and adopting sustainable land-use and agricultural practices. Additionally, investing in healthcare systems and public health infrastructure to address the direct and indirect health impacts of carbon pollution is essential.
- Q:Carbon fiber refractory?
- 3, pre oxidized carbon fiber cloth, can withstand 200--300 degrees of high temperature
- Q:Why carbon fiber resistant to low temperature
- Therefore, the carbon fiber composite core can be used in the design and manufacture of transmission carriers under extremely cold conditions, such as Antarctic research and research.
- Q:What kinds of barbecue carbon do you have?
- The disadvantage is more expensive. Ordinary charcoal advantages are cheap, disadvantages are different sizes, barbecue uneven fire, burning time is short, the process of baking carbon must be added. The mechanism of carbon is actually a mixture of carbon and coal, pressed into the multi hollow prism, from carbon containing ash on the look out the composition of coal.
- Q:What is latent carbon?
- With prochiral carbon atoms called prochiral molecules.For potential chiral compounds, can also be used to determine the order of rule configuration. For example, an atom of hydrogen by deuterium methylene propionate (D) replaced, if converted into R configuration, the hydrogen atom is called latent -R (pro-R) hydrogen atoms into S; if the configuration is called latent -S (pro-S the hydrogen atom).For medical workers, prochiral is an important concept. Almost all of the biological chemical reaction is controlled by the enzyme, the enzyme for prochiral molecules not symmetrically reaction, so they are able to identify two identical atoms or atomic groups, because they are chiral compounds. For example two methylene citric acid and only one methylene by enzymes (from rat liver) into carbonyl group.
- Q:What is the greenhouse effect of carbon dioxide?
- The process known as the greenhouse effect is caused by carbon dioxide and other greenhouse gases in the Earth's atmosphere. These gases act like a blanket, allowing sunlight to pass through while trapping the heat that is reflected back from the Earth's surface. In essence, they absorb and re-emit some of the energy that the Earth re-radiates into space, preventing it from escaping. This natural process is essential for maintaining a livable temperature on Earth. It warms the land, oceans, and atmosphere when sunlight reaches the surface. However, human activities, particularly the burning of fossil fuels, have significantly increased the concentration of carbon dioxide and other greenhouse gases. As a result, the greenhouse effect has been intensified, leading to global warming or climate change. The higher levels of carbon dioxide in the atmosphere cause more heat to be trapped, amplifying the natural warming process. This has various consequences, including rising sea levels, more frequent and severe extreme weather events, changes in precipitation patterns, and disruptions to ecosystems and biodiversity. To mitigate the impacts of climate change, it is crucial to address the greenhouse effect of carbon dioxide and reduce greenhouse gas emissions. Transitioning to renewable energy sources, improving energy efficiency, and promoting sustainable practices are key strategies in reducing carbon dioxide emissions and combating global warming.
- Q:How is carbon used in the production of filters?
- Due to its unique properties, carbon finds common usage in filter production. One of the primary applications of carbon in filters is its capacity to adsorb impurities and contaminants, attracting and retaining them. This is attributed to carbon's extensive surface area and multitude of minute pores, enabling it to effectively capture and eliminate particles, chemicals, and odors from substances like air, water, and more. In air filters, carbon is frequently combined with other materials, such as activated charcoal, to form activated carbon filters. These filters are utilized to eradicate air pollutants, allergens, and odors. The activated carbon adsorbs the contaminants, entrapping them within its porous structure and ultimately enhancing the overall air quality. In water filters, carbon can be employed in diverse forms, like granular activated carbon (GAC) or carbon block filters. GAC filters are widely utilized in household water filtration systems and are adept at eliminating chlorine, volatile organic compounds (VOCs), pesticides, and other chemicals. Conversely, carbon block filters are produced by compressing activated carbon into a solid block, thus providing a greater surface area and superior filtration efficiency. Apart from air and water filters, carbon is also utilized in various other filter types, such as those utilized in industrial processes, gas masks, and respirators. The versatility of carbon in filtering applications stems from its capability to adsorb a broad range of contaminants and its high adsorption capacity. Its inclusion in filters aids in enhancing the quality and safety of the substances undergoing filtration, rendering it an indispensable material in numerous filtration processes.
- Q:How does carbon affect ocean acidification?
- Carbon dioxide (CO2) is a greenhouse gas that is released into the atmosphere through various human activities, such as burning fossil fuels and deforestation. A significant portion of this CO2 is absorbed by the oceans, leading to a process known as ocean acidification. When CO2 dissolves in seawater, it reacts with water molecules to form carbonic acid. This reaction increases the concentration of hydrogen ions (H+), resulting in a decrease in pH levels, making the seawater more acidic. This decrease in pH is a key characteristic of ocean acidification. As the ocean becomes more acidic, it affects the delicate balance of chemical compounds that many marine organisms rely on for their survival and growth, such as corals, shellfish, and phytoplankton. These organisms use calcium carbonate to build their shells or skeletons, but the increased acidity hinders their ability to do so. Ocean acidification also affects the growth and development of marine plants and animals. For example, the larvae of some marine species are sensitive to changes in pH levels, which can impact their ability to form strong shells or skeletons. Additionally, acidified waters can disrupt the metabolism and reproductive processes of many marine organisms. The consequences of ocean acidification extend beyond individual organisms. Entire ecosystems, such as coral reefs, are threatened by the increasing acidity. Coral reefs provide habitat for countless species and are a crucial part of marine biodiversity. However, the more acidic conditions make it difficult for corals to build and maintain their calcium carbonate structures, leading to coral bleaching and the degradation of reef systems. Furthermore, ocean acidification can have cascading effects on other marine organisms and food webs. For instance, changes in the growth and survival rates of phytoplankton, a primary food source for many marine species, can disrupt the entire food chain, affecting fish populations and ultimately impacting human communities that depend on seafood for sustenance and livelihoods. In conclusion, the increase in carbon dioxide emissions is contributing to ocean acidification, which is altering the chemistry of the oceans and posing significant threats to marine life and ecosystems. Understanding and addressing the causes and impacts of ocean acidification are crucial for the long-term health and sustainability of our oceans.
- Q:What is the carbon content of different types of soil?
- The carbon content of different types of soil can vary significantly depending on various factors such as climate, vegetation, and land management practices. Generally, soils with higher organic matter content tend to have higher carbon content. Peat soils, for example, have the highest carbon content among all soil types, ranging from 30% to 60%. These soils are formed in wetland areas where the decomposition of organic matter is slow due to water saturation. As a result, large amounts of carbon accumulate over time. Forest soils also tend to have relatively high carbon content, varying between 1% and 10%. Forests provide a continuous supply of organic matter through litterfall, which contributes to the build-up of carbon in the soil. Agricultural soils, on the other hand, typically have lower carbon content compared to peat or forest soils. The carbon content of agricultural soils is influenced by factors such as crop rotation, organic amendments, and tillage practices. Depending on these factors, carbon content in agricultural soils can range from less than 1% to around 6%. Grassland soils may have carbon contents similar to agricultural soils, depending on the management practices. However, in undisturbed grasslands with high plant productivity, carbon content can be relatively higher, ranging from 2% to 8%. In arid and desert regions, soils tend to have lower carbon content due to limited vegetation and slower organic matter decomposition rates. Carbon content in these soils is often less than 1%. It is important to note that these ranges are generalizations, and the carbon content of soil can vary within and between soil types. Additionally, changes in land use, such as deforestation or conversion of grasslands to agriculture, can significantly impact the carbon content of soils.
1. Manufacturer Overview |
|
---|---|
Location | |
Year Established | |
Annual Output Value | |
Main Markets | |
Company Certifications |
2. Manufacturer Certificates |
|
---|---|
a) Certification Name | |
Range | |
Reference | |
Validity Period |
3. Manufacturer Capability |
|
---|---|
a)Trade Capacity | |
Nearest Port | |
Export Percentage | |
No.of Employees in Trade Department | |
Language Spoken: | |
b)Factory Information | |
Factory Size: | |
No. of Production Lines | |
Contract Manufacturing | |
Product Price Range |
Send your message to us
FC 93Min Calcined Anthracite Coal Steel-Making Use
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 0 m.t.
- Supply Capability:
- 20000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches