Carbon Additive Low Ash Low Sulphur Description
- Loading Port:
- Tianjin
- Payment Terms:
- TT or LC
- Min Order Qty:
- 20 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Quick Details
Place of Origin: Ningxia, China (Mainland)
Application: steel making
Shape: granule
Dimensions: FC90-95%
Product Type: Carbon Additive
C Content (%): 90-95% MIN
Working Temperature: -
S Content (%): 0.5%MAX
N Content (%): -
H Content (%): 0.6%MAX
Ash Content (%): 8.5%MAX
Volatile: 2%MAX
ADVANTAGE: low ash & sulfur
COLOR: Black
RAW MATERIAL: TaiXi anthracite
Packaging & Delivery
Packaging Details: | In 1MT plastic woven bag. |
---|---|
Delivery Detail: | 30-40DAYS |
Specifications
Carbon Additive Low Ash Low Sulfur Specifications
Carbon Additve low Ash,S,P
FC>95% ASH<4% S<0.3%
It is made from TaiXi anthracite.
instead of pertrol coke reduce the cost
Structure
Carbon Additive Low Ash Low Sulfur Specifications
Shape: granule
Dimensions: FC90-95%
Product Type: Carbon Additive
C Content (%): 90-95% MIN
Working Temperature: -
S Content (%): 0.5%MAX
N Content (%): -
H Content (%): 0.6%MAX
Ash Content (%): 8.5%MAX
Volatile: 2%MAX
ADVANTAGE: low ash & sulfur
COLOR: Black
RAW MATERIAL: TaiXi anthracite
..
Feature
Carbon Additive Low Ash Low Sulfur Specifications
Specifications (%): | ||||||
Grade | F.C | Ash | V.M | Moisture | S | Size |
CR-95 | ≥95 | <4< td=""> | <1< td=""> | <1< td=""> | <0.3< td=""> | 0-30mm As buyer's request. |
CR-94 | ≥94 | <4< td=""> | <1< td=""> | <1< td=""> | <0.3< td=""> | |
CR-93 | ≥93 | <6< td=""> | <1< td=""> | <1< td=""> | <0.4< td=""> | |
CR-92 | ≥92 | <7< td=""> | <1< td=""> | <1< td=""> | <0.4< td=""> | |
CR-91 | ≥91 | <8< td=""> | <1< td=""> | <1< td=""> | <0.4< td=""> | |
CR-90 | ≥90 | <8.5< td=""> | <1.5< td=""> | <2< td=""> | <0.4< td=""> |
Image
Carbon Additive Low Ash Low Sulfur Specifications
FAQ:
Why we adopt carbon additive?
Carbon Additives used as additive in steel making process. It made from well-selected Tai Xi anthracite which is low in content of ash, sulphur, phosphorus, high heat productivity, high chemically activation.
Mainly industry property of it is: instead of traditional pertroleum coal of Carbon Additives, reduce the cost of steelmaking.
Advantage:
Carbon Additive Low Ash Low Sulfur Specifications
1.High quality and competitive price.
2.Timely delivery.
3.If any item you like. Please contact us.
Your sincere inquiries are typically answered within 24 hours.
- Q: How does carbon cycle through living organisms?
- The carbon cycle is the process by which carbon is exchanged and recycled among various components of the Earth, including living organisms. Carbon enters the living organisms primarily through the process of photosynthesis. During photosynthesis, plants and some other organisms use sunlight, carbon dioxide, and water to produce glucose and oxygen. Plants take in carbon dioxide from the atmosphere and convert it into glucose, which is used as a source of energy for their growth and development. Some of the glucose is used immediately by the plants, while the excess is stored as starch and other carbohydrates. This is how carbon is initially incorporated into the living organisms. Consumers, such as animals, obtain carbon by consuming plants or other animals that have consumed plants. When animals consume plants, they break down the stored carbohydrates into glucose, releasing carbon dioxide back into the atmosphere through the process of cellular respiration. The glucose is used by animals as a source of energy for their own metabolic processes. When animals and plants die or produce waste, their organic matter decomposes, and this decomposition releases carbon back into the environment. Some of this carbon is converted into carbon dioxide through the process of decomposition, which is then released into the atmosphere. However, a significant portion of the carbon is converted into organic compounds by decomposers, such as bacteria and fungi, which can be further utilized by other living organisms. This cycle continues as the carbon is constantly being exchanged between the atmosphere, living organisms, and the Earth's various reservoirs, such as the oceans and soil. Carbon can also be stored for longer periods in the form of fossil fuels, such as coal, oil, and natural gas. When these fossil fuels are burned for energy, carbon dioxide is released into the atmosphere, contributing to the greenhouse effect and climate change. Overall, the carbon cycle is a complex process that involves the continuous exchange and transformation of carbon among living organisms and the environment. It is crucial for maintaining the balance of carbon in our ecosystem and plays a significant role in regulating the Earth's climate.
- Q: What is the density of carbon steel and alloy steel?
- Manganese steel 7.8115CrA 7.74 steel20Cr, 30Cr, 40Cr steel, 7.8238CrA 7.80 steelChromium vanadium, chromium nickel, chromium nickel molybdenum, chromium, manganese, silicon, manganese, nickel chromium manganese silicon silicon steel 7.85Chromium nickel tungsten steel 7.80
- Q: How does carbon affect the formation of tornadoes?
- Carbon does not have a direct effect on tornado formation. Tornadoes primarily occur when warm, moist air from the surface interacts with cold, dry air from higher levels of the atmosphere, creating strong upward drafts and rotating air columns. Carbon, as an element, does not have a significant role in this process. However, carbon emissions and human-induced climate change can indirectly impact weather patterns, including the frequency and intensity of tornadoes. The burning of fossil fuels, which releases carbon dioxide into the atmosphere, contributes to global warming. This, in turn, leads to changes in temperature and moisture patterns that can influence the conditions necessary for tornado formation. The increased levels of carbon dioxide in the atmosphere can cause the atmosphere to become more unstable, creating conditions favorable for severe thunderstorms that can produce tornadoes. Moreover, the warmer atmosphere with higher moisture content can provide more fuel for these storms, potentially making them stronger. It is important to note that the relationship between carbon emissions and tornadoes is complex and still an ongoing area of research. While there is a possibility of a connection between climate change and tornadoes, it is difficult to attribute individual tornadoes solely to carbon emissions, as tornadoes are influenced by various meteorological factors. In conclusion, carbon does not directly impact tornado formation, but the increased carbon emissions and resulting climate change can indirectly affect the conditions that contribute to tornado formation. Further scientific research is necessary to fully comprehend the relationship between carbon emissions, climate change, and tornado activity.
- Q: How does carbon impact the prevalence of tsunamis?
- The prevalence of tsunamis is not directly impacted by carbon dioxide. Tsunamis primarily occur due to undersea earthquakes, volcanic eruptions, or underwater landslides. These events release massive amounts of energy into the water, creating powerful waves that can travel across the ocean and cause devastating destruction upon reaching the coast. Although tsunamis are not directly caused by carbon dioxide emissions, there is a connection to climate change, which can indirectly influence the frequency and impact of these natural disasters. The increased levels of carbon dioxide and other greenhouse gases in the atmosphere contribute to global warming, resulting in the rise of sea levels. As the sea levels rise, coastal areas become more susceptible to the destructive force of tsunamis, as the waves can penetrate further inland. Additionally, climate change can also have an impact on the frequency and intensity of extreme weather events like hurricanes and tropical storms. These weather patterns can trigger underwater landslides or increase the likelihood of volcanic eruptions, both of which can lead to the occurrence of tsunamis. In conclusion, while carbon dioxide emissions do not directly cause tsunamis, they do play a role within the broader context of climate change. This indirect impact can result in rising sea levels and the potential for more frequent extreme weather events, ultimately affecting the prevalence and impact of tsunamis.
- Q: What are the effects of carbon emissions on the Arctic ecosystem?
- The Arctic ecosystem is significantly impacted by carbon emissions, primarily due to global warming. The release of carbon dioxide and other greenhouse gases into the atmosphere traps heat, leading to increased temperatures worldwide. However, the Arctic is particularly susceptible to these effects because of its unique characteristics. One of the most noteworthy consequences of carbon emissions on the Arctic ecosystem is the rapid melting of ice. Increasing temperatures cause glaciers and ice sheets to decrease in size, resulting in the loss of habitat for ice-dependent species like polar bears, walruses, and seals. These animals not only depend on the ice for resting and breeding but also for hunting and finding food. The reduction of their natural habitat has led to a decline in their populations, impacting the delicate balance of the Arctic food chain. Moreover, the melting of ice leads to rising sea levels, which can have cascading effects on coastal areas. Many Arctic communities, including indigenous peoples, are located near the coast and rely on the sea for their livelihoods. The increase in erosion, flooding, and storm surges due to rising sea levels pose a threat to their homes, infrastructure, and traditional ways of life. Furthermore, carbon emissions contribute to ocean acidification, a process in which excess carbon dioxide absorption by seawater lowers its pH level. This acidification has detrimental effects on marine organisms such as shellfish, corals, and plankton, which struggle to build and maintain their calcium carbonate structures. These organisms serve as essential food sources for various Arctic species, including fish, seabirds, and marine mammals. The decline in their populations disrupts the intricate web of life in the Arctic and can have far-reaching consequences. Climate change caused by carbon emissions also disrupts the timing and patterns of seasonal events, such as plant growth, bird migration, and the availability of food resources. This mismatch can have severe consequences for species that rely on specific timing for reproduction, migration, and survival. In summary, the effects of carbon emissions on the Arctic ecosystem are significant and extensive. The loss of sea ice, rising sea levels, ocean acidification, and disrupted ecological processes all contribute to the vulnerability of Arctic species and communities. Urgent action to reduce carbon emissions, mitigate climate change, and protect this fragile ecosystem is crucial for the long-term preservation of the Arctic.
- Q: How does carbon dioxide affect climate change?
- Climate change is significantly influenced by carbon dioxide (CO2), a greenhouse gas. CO2 is released into the atmosphere through natural processes like volcanic eruptions or human activities such as burning fossil fuels. Its presence in the atmosphere traps heat from the sun, preventing it from escaping back into space. This phenomenon is known as the greenhouse effect. Human activities, particularly the burning of fossil fuels like coal, oil, and natural gas, have led to an imbalance in the natural carbon cycle. This has caused an increase in CO2 concentration in the atmosphere, resulting in a rapid rise in global CO2 levels. Consequently, the Earth's surface is warming, and climate patterns are changing. Since the Industrial Revolution, the burning of fossil fuels has significantly elevated atmospheric CO2 levels, leading to an increase in the Earth's average temperature. This temperature rise impacts various aspects of the climate system, causing a range of effects. One of the most visible outcomes of increased CO2 levels is global warming. This warming leads to the melting of glaciers and polar ice, which in turn raises sea levels. Rising sea levels pose a threat to coastal areas and low-lying islands, causing increased flooding, coastal erosion, and potential displacement of communities. Moreover, elevated CO2 levels contribute to more frequent and intense heatwaves, droughts, and wildfires in many regions. These extreme weather events negatively affect agriculture, water availability, and human health. Carbon dioxide also disrupts ecosystems by altering the growth patterns and distribution of plant and animal species. Changes in temperature and precipitation patterns, driven by increased CO2 levels, disturb the delicate balance of life, leading to biodiversity loss and potential species extinction. To mitigate the impacts of CO2 on climate change, it is crucial to reduce greenhouse gas emissions. Transitioning to renewable energy sources, improving energy efficiency, and adopting sustainable practices are important steps in reducing CO2 emissions and limiting the extent of climate change. Additionally, efforts to restore and protect forests and other natural carbon sinks can help absorb and store CO2, thus mitigating its effects on the climate.
- Q: Recently bought an alarm clock, it is recommended to use carbon batteries. Nanfu battery is not good for the movement.
- Carbon batteries are not recommended, and each carbon cell can permanently destroy one cubic meter of soil or more than a dozen cubic meters of water!Today's alkaline batteries are basically mercury free environmentally friendly batteries, which can be thrown away with common waste, with very little environmental damage!What's more, the durability of alkaline batteries is several times that of carbon! Now alkaline battery quality is good, basically will not leak alkaline material!If you think the alkaline battery is not good, it is recommended to use Ni MH rechargeable batteries. The battery is also environmentally friendly and can be recycled for long periods of time,Initial input slightly larger, but if the correct use and charging, cost-effective! Especially for toys with large power consumption!The disadvantage of Ni MH batteries is memory, which needs to be used up and recharged, and is easy to discharge. It loses ten percent of the battery power every monthA few! But now there is a new type of Ni MH rechargeable battery, which is introduced by the manufacturer as if it has a semi discharge of less than fifteen percent and a low memoryOf! More suitable for clocks and watches, remote control, these electrical appliances! What's more, the voltage of Ni MH battery is usually 1.2V, which is lower than that of ordinary dry electricityPond. It is recommended to study the charging, storage and usage of NiMH rechargeable batteries. The correct method of use can save moreMoney, more environmentally friendly!The earth is my home, and it depends on everyone!!
- Q: What role does carbon play in photosynthesis?
- The role of carbon in photosynthesis is crucial because it serves as the primary element utilized by plants to generate organic compounds. In the process of photosynthesis, plants absorb carbon dioxide from the atmosphere and employ it to synthesize glucose, a simple sugar that acts as a foundational component for more intricate carbohydrates like starch and cellulose. This entire process takes place within the chloroplasts of plant cells, specifically in the stroma of the chloroplast. It is in this location that the enzyme RuBisCO facilitates the fixation of carbon dioxide into an organic molecule called PGA (phosphoglycerate). By means of a series of reactions referred to as the Calvin cycle, PGA is transformed into glucose, which can be either stored as energy or utilized for growth and reproduction. To sum up, carbon is indispensable to photosynthesis since it supplies the necessary raw material for plants to self-generate their own sustenance and maintain life.
- Q: How do you make your own carbon fiber bar?Know. ID is how to make? Don't copy anything that has nothing to do with it
- 3. carbon fiber product form and manufacturing process carbon fiber has four kinds of products: fiber, fabric, prepreg, and chopped fiber. Cloth refers to fabric made from carbon fibers. Prepreg is a product in which carbon fibers are aligned in one direction and impregnated with carbon fibers or fabrics to form sheets. A staple fiber is a short fiber. These products, together with resins, will form carbon fiber reinforced plastics (CFRP) at different ratios. The resin is attached to the fiber and can be made into a pressure vessel and roll, which is wound around a core and then plasticized or hardened. This method is called "winding forming method"". Put the cloth into a model, and then soak it with resin. It can also be the body part of the production card. This is the "method of resin transfer molding (RTM)". The manufacture of aircraft elements is made by heating, pressing and plasticizing preforms in a autoclave. A strand of prepreg is wrapped around a core and heated and plasticized. This is known as the sheet winding method, which can be used to make a golf club, a fishing rod. The short silk is mixed with resin to form a mixture, which can be used to produce mountain machine components and other products after processing. In the past, prepreg was the most widely used form of carbon fiber, fabricated by sheet winding in a reactor. Recently, however, with the development of new industrial applications, filament winding, blending and other methods of prefabrication have been developed more widely. The use of molding such as RTM has enabled manufacturers to make larger products more efficiently. The combination of carbon fiber with the most suitable resin and prefabrication process makes the application of carbon fiber more attractive.
- Q: How is carbon used in the production of fuels?
- Fuels production heavily relies on carbon, which serves as the primary element in fossil fuels like coal, oil, and natural gas. These fuels are formed through the decomposition of ancient plants and animals over millions of years, a process called carbonization. Carbonization involves subjecting organic materials to prolonged exposure to high temperature and pressure, resulting in the formation of hydrocarbon-rich substances. For instance, coal consists mainly of carbon, with traces of other elements. When coal is burned, the carbon reacts with oxygen, releasing heat energy. This heat can be utilized to generate steam, which then powers turbines for electricity production or industrial engines. Similarly, oil and natural gas, which are predominantly carbon-based, are extracted from underground reservoirs. These hydrocarbons can undergo refining to produce various fuel types such as gasoline, diesel, and jet fuel. The combustion of these fuels in engines or power plants releases energy for transportation and electricity generation. Aside from fossil fuels, carbon plays a crucial role in the production of alternative fuels like biofuels. Biofuels are derived from renewable sources such as plants, algae, or agricultural waste. The carbon within these organic materials can be converted into ethanol or biodiesel through processes like fermentation or transesterification, respectively. These biofuels can then be used as substitutes for conventional fuels, reducing greenhouse gas emissions and lessening reliance on non-renewable resources. In conclusion, carbon is a vital component in fuel production, whether obtained from fossil fuels or renewable sources. Its combustion generates energy that powers various sectors including electricity, transportation, and industry. Nevertheless, it is crucial to explore and adopt sustainable alternatives like biofuels and renewable energy sources to mitigate the negative environmental impacts associated with carbon emissions.
Send your message to us
Carbon Additive Low Ash Low Sulphur Description
- Loading Port:
- Tianjin
- Payment Terms:
- TT or LC
- Min Order Qty:
- 20 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches