• Calcined Anthracite Coal Recarburizer for Steelmaking System 1
  • Calcined Anthracite Coal Recarburizer for Steelmaking System 2
  • Calcined Anthracite Coal Recarburizer for Steelmaking System 3
Calcined Anthracite Coal Recarburizer for Steelmaking

Calcined Anthracite Coal Recarburizer for Steelmaking

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT or LC
Min Order Qty:
20 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 

Quick Details

  • Place of Origin: Ningxia, China (Mainland)

  • Application: steel making

  • Shape: granule

  • Dimensions: FC90-95%

  • Product Type: Carbon Additive

  • C Content (%): 90-95% MIN

  • Working Temperature: -

  • S Content (%): 0.5%MAX

  • N Content (%): -

  • H Content (%): 0.6%MAX

  • Ash Content (%): 8.5%MAX

  • Volatile: 2%MAX

  • ADVANTAGE: low ash & sulfur

  • COLOR: Black

  • RAW MATERIAL: TaiXi anthracite

Packaging & Delivery

Packaging Details:In 1MT plastic woven bag.
Delivery Detail:30-40DAYS

 

Specifications 

Carbon Additve Low Sulphur for Steelmaking

Carbon Additve low Ash,S,P 
FC>95% ASH<4% S<0.3% 
It is made from TaiXi anthracite.
instead of pertrol coke reduce the cost 

Structure

Carbon Additve Low Sulphur for Steelmaking

Shape: granule

  • Dimensions: FC90-95%

  • Product Type: Carbon Additive

  • C Content (%): 90-95% MIN

  • Working Temperature: -

  • S Content (%): 0.5%MAX

  • N Content (%): -

  • H Content (%): 0.6%MAX

  • Ash Content (%): 8.5%MAX

  • Volatile: 2%MAX

  • ADVANTAGE: low ash & sulfur

  • COLOR: Black

  • RAW MATERIAL: TaiXi anthracite

Feature

Carbon Additve Low Sulphur for Steelmaking

 

Specifications (%):

Grade

 F.C

 Ash

 V.M

 Moisture

 S

Size

CR-95

≥95

<4

<1

<1

<0.3

0-30mm 
As buyer's request.

CR-94

≥94

<4

<1

<1

<0.3

CR-93

≥93

<6

<1

<1

<0.4

CR-92

≥92

<7

<1

<1

<0.4

CR-91

≥91

<8

<1

<1

<0.4

CR-90

≥90

<8.5

<1.5

<2

<0.4

 

 Image

Carbon Additve Low Sulphur for Steelmaking

 

 

 FAQ:

 

 

Carbon Additve Low Sulphur for Steelmaking

Why we adopt carbon additive?

Carbon Additives used as additive in steel making process. It made from well-selected Tai Xi anthracite which is low in content of ash, sulphur, phosphorus, high heat productivity, high chemically activation.

 

Mainly industry property of it is: instead of traditional pertroleum coal of Carbon Additives, reduce the cost of steelmaking.

Advantage:

Carbon Additve Low Sulphur for Steelmaking

1.High quality and competitive price.

2.Timely delivery.

3.If any item you like. Please contact us.

Your sincere inquiries are typically answered within 24 hours.

 

Q: What kinds of barbecue carbon do you have?
The carbon has uniform size, long burning time, uniform fire, no smoke and no expensive price. Many professional barbecue shops choose this kind of carbon. The disadvantage is that it should not ignite. If only two or three people barbecue, with this carbon, then people are full, carbon has not used up, can not help but feel a little wasted.
Q: What is the carbon emission of the air conditioner?
Summer, less air-conditioning, 1 hours to reduce carbon emissions of 0.621kg, the action of the low carbon family is not how much money you need to pay, but to change some of your habits and habits, and contribute to environmental protection. Hand in hand to join hands to tackle climate warming, perhaps our hearts will be less worried about the future......
Q: What are the uses of carbon nanotubes?
Carbon nanotubes have a wide range of uses across various industries due to their unique properties. One of the major uses of carbon nanotubes is in the field of electronics and semiconductors. These nanotubes possess excellent electrical conductivity, making them ideal for creating smaller and more efficient electronic devices. They can be used as conductive additives in polymers, creating materials with enhanced electrical and thermal properties. Another important application of carbon nanotubes is in the field of materials science. They have exceptional mechanical strength and are incredibly lightweight, making them suitable for reinforcing and strengthening materials. Carbon nanotubes can be incorporated into composites, improving their mechanical properties and making them more durable. They have also been used to create super-strong fibers, which can be used in industries such as aerospace and construction. The medical field has also found uses for carbon nanotubes. They can be used in drug delivery systems, where drugs are encapsulated within the nanotube structure and delivered directly to the targeted cells or tissues. This allows for more effective and targeted drug delivery, reducing the side effects associated with traditional drug administration methods. Carbon nanotubes are also being explored as a potential material for biosensors, enabling the detection of diseases and pathogens at a much earlier stage. In energy storage, carbon nanotubes are being researched as an alternative to conventional lithium-ion batteries. They have the potential to store more energy and charge faster, which could revolutionize the field of energy storage and power generation. Additionally, carbon nanotubes can be used as catalysts in fuel cells, enhancing their efficiency and making them more cost-effective. Overall, the uses of carbon nanotubes are diverse and continue to expand as new applications are discovered. From electronics to materials science, medicine to energy storage, these nanotubes have the potential to revolutionize various industries and improve the performance of existing technologies.
Q: What materials can be carbonitriding?
Low temperature carbonitriding for high alloy tool steel, high-speed steel tools, etc., in temperature carbonitriding is under great pressure not only in carbon steel wear parts, high temperature carbonitriding is mainly used for medium carbon steel and alloy steel under great pressure.
Q: Is the power consumption of carbon fiber heating very high?
The advantages and disadvantages of carbon fiber heating carbon fiber heating, comfortable and natural advantages of 1: the ground heating source, on the human body at the end of the foot has a good heating, health effects, and health effects of carbon fiber far infrared heating to improve the microcirculation of the human body, make the body feel very comfortable. 2, heating rapidly: carbon fiber thermal conductivity is good, so carbon fiber heating ground heating faster. 3, installation and maintenance cost is low, long service life: carbon fiber heating laying low cost, 100 square meters of house, generally laying price, but 10000 yuan, usually without maintenance, and product life and construction life is quite.
Q: How does carbon impact the acidity of rainfall?
Carbon dioxide (CO2) in the atmosphere reacts with water to form carbonic acid (H2CO3), which contributes to the acidity of rainfall. When carbon emissions from human activities increase, the concentration of CO2 in the atmosphere also increases. This leads to higher levels of carbonic acid in the rainwater, making it more acidic. This phenomenon is known as acid rain and can have detrimental effects on aquatic ecosystems, soil quality, and even human health.
Q: How does carbon contribute to the strength of alloys?
Carbon contributes to the strength of alloys by forming interstitial solid solutions with metals, which increases the hardness and strength of the material. The carbon atoms occupy the spaces between the metal atoms, creating lattice distortions and enhancing the overall strength of the alloy. Additionally, carbon can also form compounds with metals, such as carbides, which further improve the hardness and wear resistance of alloys.
Q: What are the effects of carbon emissions on the stability of alpine ecosystems?
The effects of carbon emissions on the stability of alpine ecosystems are significant and far-reaching. Carbon emissions, primarily in the form of carbon dioxide, contribute to the greenhouse effect and subsequent climate change. This leads to a series of impacts that directly affect the stability of alpine ecosystems. One of the most noticeable effects is the increase in global temperatures. As temperatures rise, glaciers and snow caps in alpine regions melt at accelerated rates. This has a profound impact on the availability of freshwater resources, as alpine regions are often the source of major rivers and lakes. Reduced water availability not only affects the survival of plant and animal species but also impacts human populations relying on these water sources for agriculture, drinking water, and hydropower generation. Another consequence of carbon emissions is the alteration of precipitation patterns. Climate change disrupts the balance of rainfall and snowfall in alpine ecosystems, leading to more frequent and severe droughts or intense rainfall events. Such changes in precipitation patterns can result in soil erosion, landslides, and the overall destabilization of alpine terrain. This poses a threat to the survival of alpine flora and fauna, as well as the loss of vital habitats and biodiversity. Furthermore, carbon emissions contribute to the acidification of alpine lakes and rivers. Increased carbon dioxide in the atmosphere dissolves in water bodies, forming carbonic acid. This acidification negatively affects aquatic organisms, such as fish and amphibians, by impairing their reproductive abilities, altering their behavior, and even causing mortality. It also disrupts the delicate balance of alpine freshwater ecosystems, leading to a decline in species diversity and ecological resilience. Lastly, carbon emissions can indirectly impact alpine ecosystems through the spread of invasive species. Climate change creates favorable conditions for the expansion of non-native plant and animal species into higher elevations. These invasive species can outcompete native flora and fauna, disrupt ecological interactions, and ultimately lead to the displacement or extinction of native species. This disrupts the natural balance of alpine ecosystems and compromises their stability. In conclusion, carbon emissions have profound effects on the stability of alpine ecosystems. These emissions contribute to the melting of glaciers, alteration of precipitation patterns, acidification of water bodies, and the spread of invasive species. These impacts disrupt the balance of alpine ecosystems, leading to the loss of biodiversity, habitat degradation, and reduced availability of freshwater resources. Urgent action to mitigate carbon emissions is crucial to preserve the stability and functioning of these fragile ecosystems.
Q: How is carbon used in the production of cosmetics?
Carbon is used in the production of cosmetics in various ways. One of the most common uses of carbon in cosmetics is as a coloring agent. Carbon black, a form of carbon, is used as a pigment in many cosmetic products such as eyeliners, mascaras, and eyeshadows to give them a deep black color. It is also used as a colorant in nail polishes and lipsticks. Carbon is also used in the production of activated charcoal, which has gained popularity in recent years for its detoxifying properties. Activated charcoal is derived from carbon and is used in skincare products such as face masks, cleansers, and scrubs. It is known for its ability to absorb excess oil and impurities from the skin, making it a popular ingredient in products targeting oily and acne-prone skin. Additionally, carbon is used in the manufacturing of exfoliating products. Microbeads, which are tiny particles used in facial scrubs and body washes to remove dead skin cells, can be made from carbon. These microbeads help to gently exfoliate the skin, leaving it smooth and rejuvenated. Furthermore, carbon is used in the production of some cosmetic base materials. For example, carbon is an essential component in the creation of emollients, which are substances that help to moisturize and soften the skin. Emollients are commonly found in creams, lotions, and lip balms, contributing to their hydrating properties. In conclusion, carbon plays a crucial role in the production of cosmetics. From providing color to enhancing the efficacy of skincare products, carbon is a versatile ingredient that contributes to the aesthetics and functionality of various cosmetic formulations.
Q: Helmet material: ABS composites, FRP, carbon fiber, what are the differences? How to tell good from bad?
ABS is a kind of thermoplastic material, glass steel is called composite materials, the helmet is a large part of carbon fiber prepreg epoxy resin has high temperature and high pressure molding, glass fiber and unsaturated resin molding, strength needless to say, of course, is the best carbon fiber, the price is also the most expensive.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords