• Calcined Anthracite Coal Carbon Coke for Steelmaking System 1
  • Calcined Anthracite Coal Carbon Coke for Steelmaking System 2
  • Calcined Anthracite Coal Carbon Coke for Steelmaking System 3
Calcined Anthracite Coal Carbon Coke for Steelmaking

Calcined Anthracite Coal Carbon Coke for Steelmaking

Ref Price:
$200.00 - 300.00 / m.t. get latest price
Loading Port:
Tianjin
Payment Terms:
TT or LC
Min Order Qty:
20 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Quick Details

  • Place of Origin: Ningxia, China (Mainland)

  • Application: steel making

  • Shape: granule

  • Dimensions: FC90-95%

  • Product Type: Carbon Additive

  • C Content (%): 90-95% MIN

  • Working Temperature: -

  • S Content (%): 0.5%MAX

  • N Content (%): -

  • H Content (%): 0.6%MAX

  • Ash Content (%): 8.5%MAX

  • Volatile: 2%MAX

  • ADVANTAGE: low ash & sulfur

  • COLOR: Black

  • RAW MATERIAL: TaiXi anthracite

 

Packaging & Delivery

Packaging Details:

In 1MT plastic woven bag.

Delivery Detail:

30-40 DAYS

 

Calcined Anthracite Coal Carbon Coke for Steelmaking

Carbon Additve low Ash,S,P 
FC>95% ASH<4% S<0.3% 
It is made from TaiXi anthracite.
instead of pertrol coke reduce the cost 

 

Features of Calcined Anthracite Coal Carbon Coke for Steelmaking

  • Shape: granule

  • Dimensions: FC90-95%

  • Product Type: Carbon Additive

  • C Content (%): 90-95% MIN

  • Working Temperature: -

  • S Content (%): 0.5%MAX

  • N Content (%): -

  • H Content (%): 0.6%MAX

  • Ash Content (%): 8.5%MAX

  • Volatile: 2%MAX

  • ADVANTAGE: low ash & sulfur

  • COLOR: Black

  • RAW MATERIAL: TaiXi anthracite

 

Specifications of Calcined Anthracite Coal Carbon Coke for Steelmaking

Specifications (%):

Grade

 F.C

 Ash

 V.M

 Moisture

 S

Size

CR-95

≥95

<4

<1

<1

<0.3

0-30mm 
As buyer's request.

CR-94

≥94

<4

<1

<1

<0.3

CR-93

≥93

<6

<1

<1

<0.4

CR-92

≥92

<7

<1

<1

<0.4

CR-91

≥91

<8

<1

<1

<0.4

CR-90

≥90

<8.5

<1.5

<2

<0.4

 

FAQ of Calcined Anthracite Coal Carbon Coke for Steelmaking

Why we adopt carbon additive?

Carbon Additives used as additive in steel making process. It made from well-selected Tai Xi anthracite which is low in content of ash, sulphur, phosphorus, high heat productivity, high chemically activation. 

Mainly industry property of it is:instead of traditional pertroleum coal of Carbon Additives, reduce the cost of steelmaking.

Advantage of Calcined Anthracite Coal Carbon Coke for Steelmaking

1.High quality and competitive price.

2.Timely delivery.

3.If any item you like. Please contact us.

 

Images of Calcined Anthracite Coal Carbon Coke for Steelmaking

 

carbon

Q:How does carbon dating work?
Carbon dating works by measuring the amount of radioactive carbon-14 isotopes in organic materials, such as bones or wood. As living organisms absorb carbon-14 from the atmosphere, they maintain a constant ratio of carbon-14 to carbon-12. However, once an organism dies, it no longer takes in carbon-14, and the existing carbon-14 begins to decay at a known rate. By comparing the remaining carbon-14 with the known decay rate, scientists can determine how long ago the organism died, providing a reliable method for dating organic materials up to about 50,000 years old.
Q:How does carbon affect the formation of heatwaves?
Carbon dioxide, a greenhouse gas, plays a significant role in the formation of heatwaves. When carbon dioxide is released into the atmosphere through human activities such as burning fossil fuels and deforestation, it acts as a blanket, trapping heat from the sun and preventing it from escaping back into space. This phenomenon is known as the greenhouse effect. As carbon dioxide levels continue to rise, the Earth's temperature also increases, leading to more frequent and intense heatwaves. The excess heat trapped in the atmosphere creates a feedback loop, further exacerbating the problem. Heatwaves occur when high-pressure systems stall over a region for an extended period, causing temperatures to soar well above average. Carbon not only influences the intensity of heatwaves but also their duration. The increased greenhouse effect prolongs the time during which heatwaves persist, making them more dangerous and damaging. This prolonged exposure to extreme heat can have severe consequences on human health, leading to heat-related illnesses, increased mortality rates, and reduced productivity. Furthermore, carbon emissions contribute to climate change, which alters weather patterns and leads to more extreme events like heatwaves. Climate models project that heatwaves will become more frequent, longer-lasting, and intense in the future if carbon emissions are not significantly reduced. Addressing the issue of carbon emissions is crucial in mitigating the impacts of heatwaves. Transitioning to cleaner and renewable energy sources, implementing energy efficiency measures, and promoting reforestation efforts are some of the steps that can be taken to reduce carbon dioxide levels. By doing so, we can mitigate the formation of heatwaves and protect both human health and the environment.
Q:What should be done to deal with leakage of carbon monoxide from the plant?
The container should be cooled by heat in time. The harm to health, carbon monoxide and hemoglobin binding capacity than oxygen 200 times larger, after inhalation, in the blood and hemoglobin binding, interference blood carrying oxygen capacity, resulting in tissue hypoxia. The skin starts to become gray, and the skin and mucous membranes are red. Severe damage to brain cells can also cause secondary diseases, light damage to the heart, and damage to pyramidal or extrapyramidal systems, including the basal ganglia. Acute poisoning: mild poisoning are headache, dizziness, lethargy, tinnitus, palpitation, nausea, vomiting, weakness, abdominal pain, weakness and other symptoms; moderate poisoning in addition to the above symptoms, and complexion, lips cherry red, rapid pulse, irritability, instability of gait, fuzzy consciousness, coma patients remain unconscious;, miosis, muscle tension increased, frequent convulsions, incontinence, depth of poisoning due to respiratory paralysis and death. Chronic effects: the main manifestation of long-term inhalation of a certain amount of carbon monoxide, fatigue, irritability, indigestion and so on, can cause damage to the nervous and cardiovascular system. The compressed gas storage requirements in bottles, should be stored in a cool, ventilated warehouse, storage temperature should not exceed 300C; keep away from heat, avoid direct sunlight; and oxygen, compressed air, oxidant and stored separately; avoid mixed mixed transport. The lighting, ventilation and other facilities in the storage room shall be explosion-proof, and the switch is located outside the warehouse. Equipped with appropriate varieties and corresponding quantity of fire-fighting equipment.
Q:What is a carbon free martensite?
Thus, I think the non carbon martensite should refer to the martensite formed by ferrous alloy (non carbon), but the carbon in the iron is difficult to be completely removed
Q:What is the most common isotope of carbon?
The most common isotope of carbon is carbon-12.
Q:What is the boiling point of carbon?
The boiling point of carbon, an element that is not metallic, is determined by its allotrope. Carbon exhibits various allotropes, such as graphite and diamond, each possessing distinct physical characteristics. Graphite, comprising layers of carbon atoms organized in a hexagonal lattice, lacks a boiling point because it directly transitions from a solid to a gas through sublimation. Conversely, diamond, composed of carbon atoms arranged in a three-dimensional lattice, also lacks a boiling point as it undergoes direct sublimation. Consequently, carbon, in its pure elemental form, does not possess a boiling point.
Q:What are the advantages of carbon-based batteries?
There are several advantages of carbon-based batteries that make them a popular choice in various applications. Firstly, carbon-based batteries, such as alkaline batteries, have a longer shelf life compared to other types of batteries. This means that they can retain their charge for extended periods of time, making them ideal for devices that are used infrequently or in emergency situations. Secondly, carbon-based batteries offer a higher energy density, meaning that they can store more energy in a smaller package. This makes them more compact and lightweight, which is advantageous for portable electronic devices like smartphones, laptops, and cameras. Furthermore, carbon-based batteries typically have a lower self-discharge rate, meaning they lose less charge over time when not in use. This allows them to maintain their power for longer periods without requiring frequent recharging or replacement. Carbon-based batteries also tend to have a higher discharge rate, meaning they can deliver power more quickly when needed. This is beneficial for devices that require a sudden burst of energy or for high-drain applications like digital cameras or power tools. Moreover, carbon-based batteries are generally more cost-effective compared to other types of batteries. They are widely available, inexpensive to produce, and can be easily recycled, reducing environmental impact. In conclusion, the advantages of carbon-based batteries include a longer shelf life, higher energy density, lower self-discharge rate, higher discharge rate, cost-effectiveness, and environmental friendliness. These features make them a reliable and efficient choice for a wide range of electronic devices and applications.
Q:What is the density of carbon steel and alloy steel?
Chromium molybdenum aluminum steel 7.65Tungsten 9 high speed tool steel 8.3Tungsten 18 high speed tool steel 8.7High strength alloy steel 7.82Bearing steel 7.81Stainless steel 0Cr13, 1Cr13, 2Cr13, 3Cr13, 4Cr13, Cr17Ni2, Cr18, 9Cr18, Cr25,, Cr28 7.75Cr14, Cr17 7.70Cr18Ni9, 1Cr18Ni9, Cr18Ni9Ti, 2Cr18Ni9 7.851Cr18Ni11Si4A1Ti 7.52Stainless steel 1Crl8NillNb, Cr23Ni18 7.92Cr13Ni4Mn9 8.53Cr13Ni7Si2 8
Q:How is carbon used in the production of filters?
Carbon is used in the production of filters due to its highly porous nature and ability to adsorb impurities. It acts as a powerful adsorbent, attracting and trapping contaminants such as chemicals, odors, and particles from air or water. This makes carbon an excellent material for removing impurities and improving the quality of filtered products.
Q:What are the impacts of carbon emissions on the stability of coral reefs?
Carbon emissions have significant impacts on the stability of coral reefs. One of the main consequences of carbon emissions is ocean acidification, which occurs when carbon dioxide is absorbed by the ocean. This leads to a decrease in the pH level of the water, making it more acidic. Coral reefs are highly sensitive to changes in pH levels, and as the water becomes more acidic, it becomes more difficult for corals to build and maintain their calcium carbonate skeletons. The increased acidity of the water also affects the growth and survival of other organisms that form the foundation of coral reef ecosystems, such as algae and shellfish. These organisms play a crucial role in providing food and habitat for many species, including corals. As their populations decline due to acidification, the entire reef ecosystem becomes destabilized. Another impact of carbon emissions on coral reefs is ocean warming. Carbon dioxide acts as a greenhouse gas, trapping heat in the atmosphere and causing global temperatures to rise. This increase in temperature leads to coral bleaching, a process in which corals expel the symbiotic algae living within their tissues. The loss of these algae deprives corals of their main source of nutrition and gives them a bleached appearance. If the water temperatures remain high for an extended period, corals may die, resulting in the degradation of the reef structure. Furthermore, carbon emissions contribute to sea-level rise, which poses a threat to the stability of coral reefs. Rising sea levels increase the risk of coastal erosion and flooding, which can damage or destroy coral reef habitats. Additionally, increased storm intensity and frequency, a consequence of climate change, can physically damage coral reefs, making them more susceptible to disease and preventing their recovery. Overall, carbon emissions have a detrimental impact on the stability of coral reefs. Ocean acidification, coral bleaching, rising sea levels, and increased storm activity all work together to weaken and degrade these delicate ecosystems. It is crucial to reduce carbon emissions and take action to mitigate climate change in order to protect and preserve the health of coral reefs and the countless species that depend on them.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords