• Aluminium Circle in grade A3XXX Hot Rolled DC System 1
  • Aluminium Circle in grade A3XXX Hot Rolled DC System 2
Aluminium Circle in grade A3XXX Hot Rolled DC

Aluminium Circle in grade A3XXX Hot Rolled DC

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT or LC
Min Order Qty:
3 m.t.
Supply Capability:
1000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

1.Structure of Aluminum Cirlces D.C Quality 3xxx Description

Aluminum circles D.C quality 3xxx is made from aluminum coils 3xxx.  Aluminum circles D.C quality 3xxx has great ductility, heat conductivity, anti-corrosion and moisture resistance properties.

Aluminum circles D.C quality 3xxx are widely used for kitchen wares including fried pans, non-sticky pans, cooking pots,hard anodized cookware, pressure cooker and house hold utensils.

 

2. Aluminum Cirlces D.C Quality 3xxx Quality Specification

A3XXX Hot Rolled DC Aluminium Circle

1) alloy number  3003  3004  3005

2) temper available O H12 H14 H16 H18.

3) application: cookware utensil and basin.

4) thickness: 0.5-4.0mm.(+/-0.02mm)

5) diameter: 100-1200mm.(+/-0.5mm)

6) production treatment: cold rolled

7) surface appearance: flat clean surface no scratch, oil dirty and oxidation.

8) cutting edge: neat cutting edge no burrs.

 

3.Aluminum Circles D.C Quality 3XXX Images 

Aluminum Circles D.C Quality 3XXX

 

4.  FAQ of D.C Quality 3xxx Specification

AHow to guarantee the quality?

Customers are welcome to our mill to visit and check the products. Besides, we can arrange a third party to test the quality.

 

BWhen will you deliver the products?

The goods will be delivered within 35 days after receiving advanced payment or original L/C.

 

Q: Is it possible to recycle aluminum using renewable energy sources such as solar or wind power?
<p>Yes, aluminum can be recycled using solar energy or wind energy. The recycling process involves melting the aluminum, which can be powered by electricity generated from renewable sources. Solar panels and wind turbines can produce the electricity needed for this process, reducing the carbon footprint associated with aluminum recycling. In fact, recycling aluminum requires only 5% of the energy needed to produce new aluminum from raw materials, making it an energy-efficient process that benefits significantly from renewable energy sources.</p>
Q: Is there a new technology available for recycling aluminum?
<p>Yes, new technologies are being developed and implemented for recycling aluminum more efficiently. One such technology is the use of advanced sorting systems that can separate different types of metals, including aluminum, from waste streams. Additionally, there are innovations in the smelting process that reduce energy consumption and emissions. For instance, some companies are using inert anodes in the electrolytic process to produce aluminum, which can significantly lower the carbon footprint. These advancements not only make aluminum recycling more environmentally friendly but also more economically viable.</p>
Q: Is it possible to repurpose or reuse old aluminum foil for various uses?
<p>Yes, old aluminum foil can be repurposed for various uses. It can be recycled, used as a makeshift scrubber for cleaning, or as a reflector for grilling. You can also use it to cover food for storage or as a barrier in gardening to deter pests. However, it's important not to reuse foil that has held acidic or sugary foods, as it can corrode and release aluminum into the food. Always ensure the foil is clean and in good condition before repurposing.</p>
Q: What are the sustainable methods that can be employed in the manufacturing process involving aluminum?
<p>Yes, sustainable methods can be employed in aluminum manufacturing. These include using recycled aluminum, which requires significantly less energy than mining and refining new aluminum. Implementing energy-efficient technologies and reducing emissions in the production process are also crucial. Additionally, investing in research for new, more sustainable aluminum alloys and manufacturing processes can lead to reduced environmental impact. Lastly, proper waste management and recycling programs can help minimize the environmental footprint of aluminum production.</p>
Q: This question asks about the impact of weathering on aluminum surfaces, including potential changes and effects.
<p>The weathering process can significantly affect aluminum surfaces. Aluminum naturally forms a protective oxide layer when exposed to air, which provides corrosion resistance. However, over time, weathering can lead to the thinning or damage of this oxide layer, especially in harsh environments. This can result in corrosion, pitting, or discoloration. Additionally, weathering can cause physical changes such as surface roughening due to the differential erosion of the aluminum and its protective layer. In coastal areas, the presence of salt can accelerate these effects. Proper maintenance, such as regular cleaning and protective coatings, can help mitigate the effects of weathering on aluminum surfaces.</p>
Q: Is it possible to utilize recycled aluminum in the manufacturing of solar panels or wind turbines?
<p>Yes, recycled aluminum can be used in the production of solar panels and wind turbines. Recycled aluminum is often used in the manufacturing process due to its properties such as low density, high strength, and excellent corrosion resistance. In solar panels, it can be used for the frame and mounting structures, while in wind turbines, it is commonly used for the construction of the turbine blades and other components. The use of recycled aluminum not only reduces the environmental impact of mining new aluminum but also contributes to the sustainability of renewable energy technologies.</p>
Q: This question asks about the amount of energy needed to produce aluminum.
<p>The energy required for the production of aluminum is substantial. Producing one ton of aluminum typically requires around 15-25 kilowatt-hours of electricity, largely due to the process of electrolysis, which is used to extract aluminum from its ore, bauxite. This high energy consumption is a significant factor in aluminum production costs and environmental impact. The energy required can vary based on the efficiency of the smelting process and the source of electricity used.</p>
Q: What precautions should be taken when using aluminum containers for food and beverages to ensure safety?
<p>When using aluminum containers for food and drink, safety measures include avoiding prolonged storage of acidic or alkaline foods, as they can cause aluminum leaching. Do not heat aluminum containers in a microwave or expose them to high temperatures, as this can also lead to aluminum release. Regularly inspect containers for signs of wear or damage, as these can increase the risk of contamination. Always use food-grade aluminum containers and avoid using them for non-food items. Washing aluminum containers with mild detergents and avoiding abrasive cleaners can also help maintain their integrity and safety.</p>
Q: Explain the process by which aluminum forms alloys.
<p>Aluminum forms alloys by combining with other elements, such as copper, magnesium, silicon, manganese, and zinc, among others. This process involves melting aluminum and the alloying elements together in a furnace. The molten mixture is then cooled and solidified to form an alloy. The resulting alloy has properties that are different from pure aluminum, such as increased strength, corrosion resistance, and improved machinability. The specific properties of the alloy depend on the elements added and their proportions. Alloying allows for the customization of aluminum's characteristics to suit various applications in industries like aerospace, automotive, and construction.</p>
Q: Describe the chemical reaction that occurs when aluminum reacts with an acid.
<p>When aluminum reacts with an acid, it undergoes a single displacement reaction. The general reaction can be represented as: 2Al + 6HCl 鈫?2AlCl鈧?+ 3H鈧? In this reaction, aluminum (Al) displaces hydrogen (H) from the hydrochloric acid (HCl), forming aluminum chloride (AlCl鈧? and hydrogen gas (H鈧?. The aluminum atoms lose three electrons each to form Al鲁鈦?ions, while the hydrogen ions (H鈦? from the acid gain electrons to form hydrogen gas. This reaction is exothermic, releasing heat and often producing bubbles of hydrogen gas.</p>

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches