• Alloy Steel 8mm SAE 1010 Coils Steel Wire Rod System 1
  • Alloy Steel 8mm SAE 1010 Coils Steel Wire Rod System 2
  • Alloy Steel 8mm SAE 1010 Coils Steel Wire Rod System 3
Alloy Steel 8mm SAE 1010 Coils Steel Wire Rod

Alloy Steel 8mm SAE 1010 Coils Steel Wire Rod

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
30 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Carbon Steel
Shape:
Steel Coil
Technique:
Hot Rolled
Surface Treatment:
Dry
Certification:
ISO,SGS,UL,IBR,RoHS,CE,API,BSI,BV

Product information:

Secifications

8mm SAE 1010b Coils Steel Wire Rod

other name: 5.5mm-12mm wire rod in coil


1.Grade: SAE 1006B,SAE 1008B,AISI 1050, AISI 1070 
2.Diameter: 5.5mm-12mm

sae 1008 steel wire rod      

 

Product 

sae 1008 low carbon steel wire rod price steel wire rod carbon steel wire rod 

Standard

AISI, SAE,ASTM, BS, DIN, GB, JIS

Steel grade

Q195,Q235,SAE1006B, SAE1008B, SAE1010B, SAE1018B, AISI 1010, AISI 1020, AISI 1050, AISI 1070 or according to customers requirements

Material

Mild steel, iron, carbon, steel, ms

Wire Gauge

5.5mm,6.5mm,8mm,10mm,12mm-18mm,

Technique

Hot rolled, Cold Drawn

Coil weight

1.8-2.1mts

MOQ

10MT

Delivery Time

15-30 days after receipt of L/C or deposit by T/T

Packing

In coil and load in container, if large quantity, by bulk vessel; Can be packed as customers' special requirements

Payment terms

1).100% irrevocable L/C at sight.
2).30% T/T prepaid and the balance against the copy of B/L.
3).30% T/T prepaid and the balance against L/C

Application

widely used in machinery parts, manufacturing industry, electronics industry, metal tools and others

Product Show:

Alloy Steel 8mm SAE 1010 Coils Steel Wire Rod


Workshop Show:

Alloy Steel 8mm SAE 1010 Coils Steel Wire Rod

Shipping 

1. FedEx/DHL/UPS/TNT for samples, Door-to-Door;

2. By Air or by Sea for batch goods, for FCL; Airport/ Port receiving;

3. Customers specifying freight forwarders or negotiable shipping methods!

Delivery Time: 3-7 days for samples; 5-25 days for batch goods.

 

Payment Terms

1.Payment: T/T, L/C, Western Union, MoneyGram,PayPal; 30% deposits; 70% balance before delivery.

2.MOQ: 1pcs

3.Warranty : 3 years

4.Package Informations: 1) EXPORT, In 20 feet (GW 25 ton) or 40 feet Container (GW 25 ton)

                                           2)as customer's requirement


Why choose us? 

(1) The leading exporter in China special steel industry.       

(2) Large stocks for various sizes, fast delivery date.       

(3) Good business relationship with China famous factories.       

(4) More than 7 years steel exporting experience.       

(5) Good after-sales service guarantee. 


Q:What are the different inspection methods used for special steel?
There are several inspection methods used for special steel, including visual inspection, magnetic particle inspection, ultrasonic testing, radiographic testing, and dye penetrant inspection. These methods help identify any surface defects, cracks, or internal flaws in the steel, ensuring its quality and integrity.
Q:How does special steel perform in high-temperature mechanical fatigue conditions?
Special steel performs well in high-temperature mechanical fatigue conditions due to its unique composition and properties. It exhibits excellent strength, toughness, and heat resistance, enabling it to withstand cyclic loading and high temperatures without experiencing significant degradation or failure. The special steel's exceptional performance in such conditions makes it an ideal choice for applications that involve continuous exposure to elevated temperatures and mechanical stresses, ensuring long-term reliability and durability.
Q:What are the main applications of special steel in the medical implants?
Special steel is widely used in medical implants due to its unique properties and benefits. The main applications of special steel in medical implants include orthopedic implants such as hip and knee replacements, dental implants, cardiovascular devices like stents and pacemakers, and surgical instruments. The high strength, corrosion resistance, biocompatibility, and ability to be sterilized make special steel an ideal material for these applications, providing long-lasting and reliable solutions for patients in need of medical implants.
Q:How does special steel maintain its strength at different temperatures?
Special steel maintains its strength at different temperatures due to its unique composition and specific manufacturing processes. The addition of alloying elements, such as chromium, nickel, and molybdenum, enhances the steel's ability to resist thermal degradation and maintain its structural integrity. Additionally, special heat treatment techniques, such as quenching and tempering, are applied to improve the steel's microstructure, resulting in increased strength and toughness at various temperature ranges.
Q:How does special steel contribute to reducing product weight while maintaining strength?
Special steel, such as high-strength low-alloy (HSLA) steel, contributes to reducing product weight while maintaining strength through its unique properties. Special steel is engineered to have a higher strength-to-weight ratio compared to traditional steel, allowing manufacturers to use less material without compromising strength. The use of special steel enables the production of lighter and more efficient products, which can have significant benefits in various industries such as automotive, aerospace, and construction.
Q:What are the different high-pressure grades of special steel?
There are several different high-pressure grades of special steel, each with its own unique properties and applications. Some of the commonly used high-pressure grades of special steel include: 1. 4130 steel: This grade of steel is known for its excellent strength, toughness, and heat resistance. It is often used in the manufacturing of high-pressure tubing and components for the oil and gas industry. 2. 4340 steel: This grade of steel is known for its exceptional strength and toughness. It is commonly used in the production of high-pressure valves, gears, and other critical components in industries like aerospace, defense, and automotive. 3. 316 stainless steel: This grade of stainless steel is highly corrosion-resistant and has excellent high-temperature properties. It is frequently used in high-pressure applications such as pipelines, heat exchangers, and pressure vessels in chemical and petrochemical industries. 4. 17-4 PH stainless steel: This grade of stainless steel offers a combination of high strength, excellent corrosion resistance, and good toughness. It is often used in high-pressure pump components, turbine blades, and other critical parts in industries like power generation and aerospace. 5. F22 steel: This grade of steel is a low-alloy steel with high-temperature strength and excellent creep resistance. It is commonly used in high-pressure and high-temperature applications such as boilers, pressure vessels, and piping systems in power plants and refineries. These are just a few examples of the high-pressure grades of special steel available. The selection of the appropriate grade depends on the specific requirements of the application, including factors like pressure, temperature, corrosion resistance, and mechanical properties.
Q:What are the different methods for improving the creep resistance of special steel?
Several methods exist to enhance the creep resistance of special steel. One commonly employed technique involves alloying. By incorporating specific alloying elements like chromium, molybdenum, and vanadium, the steel's creep resistance can be significantly improved. These alloying elements create stable carbides or nitrides that serve as obstacles to dislocation movement, thereby reducing the rate of creep deformation. Heat treatment represents another effective approach. By subjecting the steel to carefully controlled heating and cooling processes, the microstructure can be refined to enhance its creep resistance. Techniques such as quenching and tempering aid in the formation of a fine-grained structure, which in turn increases the steel's strength and resistance to creep. Surface modification offers an alternative means of improving creep resistance. Nitriding and carburizing techniques can be utilized to introduce nitrogen or carbon into the steel's surface layer, creating a hardened layer that enhances creep resistance. Moreover, grain size control can be achieved through methods like grain boundary engineering or severe plastic deformation. By refining the grain structure, the movement of dislocations within the material is impeded, resulting in improved creep resistance. Lastly, the application of coatings can also bolster the creep resistance of special steel. Coatings such as ceramic or metallic coatings provide a protective layer that hampers the diffusion of impurities and slows down the creep rate. To summarize, the improvement of creep resistance in special steel can be accomplished through various techniques, including alloying, heat treatment, surface modification, grain size control, and the use of coatings. These methods aim to fortify the steel's microstructure, hinder dislocation movement, and establish protective barriers against creep deformation.
Q:Can special steel be used in the sporting goods manufacturing industry?
Yes, special steel can be used in the sporting goods manufacturing industry. Special steel, with its unique properties such as high strength, durability, and corrosion resistance, can be utilized in the production of various sporting goods such as golf clubs, baseball bats, tennis rackets, and bicycle frames. The use of special steel in these products enhances their performance, increases their lifespan, and provides better overall quality to athletes and sports enthusiasts.
Q:How is special steel used in the aerospace supply chain?
Special steel is used in the aerospace supply chain for various critical applications. It is used to manufacture components such as turbine blades, engine parts, landing gears, and structural components of aircraft. Special steel offers excellent strength, durability, and resistance to high temperatures, making it suitable for withstanding the extreme conditions faced by aerospace equipment. Its use in the aerospace supply chain helps ensure the reliability, performance, and safety of aircraft.
Q:What are the different methods of surface shot blasting for special steel?
There are several methods of surface shot blasting for special steel, including wheel blasting, air blasting, and centrifugal blasting. Wheel blasting involves using a rotating wheel to propel abrasive particles onto the steel surface, while air blasting uses compressed air to propel the particles. Centrifugal blasting involves a spinning rotor that propels the particles onto the steel surface. These methods help remove rust, scale, and other contaminants from the steel surface, preparing it for further treatment or coating.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords