Dia.8mm Grade SAE 1006 Coils Steel Wire Rod
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 10 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Specification
Dia.8mm Grade SAE 1006 Coils Steel Wire Rod
Details of the Dia.8mm Grade SAE 1006 Coils Steel Wire Rod
Steel Grade | Q195-Q235,Q235,SAE 1008-1018 Hot Rolled Steel Wire Rod |
Diameter | 5.5, 6.5, 7,8, 9,10, 12,14mm.etc. |
Coil weight | 2m.t. |
Application | drawing, construction materials, machinery parts,construction for Houses, Bridges, Roads,Packing |
Deliver Time | 25-30 days after receipt of L/C or deposit by T/T |
Packing | In coils, loading in container or by bulk vessel |
Payment terms | 1).100% irrevocable L/C at sight. |
2).30% T/T prepaid and the balance against the copy of B/L. | |
3).30% T/T prepaid and the balance against L/C |
Chemical Composition(%) | ||||||
C | Mn | Si | S | P | Cr | |
SAE1006B | 0.03~O.07 | ≤0.32 | ≤0.30 | ≤0.045 | ≤0.040 | 0.3-0.35 |
Mechanical properties | ||||||
Yield strength(N/mm2) | Tensile strength(N/mm2) | Elongation(%) | ||||
250-280 | 350-380 | ≥32 | ||||
Grade | Chemical Composition(%) | |||||
C | Mn | Si | S | P | Cr | |
SAE1008B | 0.10max | 0.3~O.50 | 0.15max | 0.050max | 0.040 max | 0.3-0.35 |
Mechanical properties | ||||||
Yield strength(N/mm2) | Tensile strength(N/mm2) | Elongation(%) | ||||
≥195 | 315-430 | ≥30 |
Supplier of the Dia.8mm Grade SAE 1006 Coils Steel Wire Rod
CNBM International Corporation is the most import and export platform of CNBM group(China National Building Material Group Corporation) ,which is a state-owned enterprise, ranked in 270th of Fortune Global 500 in 2015.
With its advantages, CNBM International are mainly concentrate on Cement, Glass, Iron and Steel, Ceramics industries and devotes herself for supplying high quality series of refractories as well as technical consultancies and logistics solution.
Delivery of the Dia.8mm Grade SAE 1006 Coils Steel Wire Rod
Packaging Detail | Sea worthy packing /as per customer's packing instruction |
Delivery Detail | 15 ~ 40 days after receiving the deposit |
Products Show
FAQ:
Are you a trading company or manufacturer? | Manufacturer |
What’s the MOQ? | 3 metric ton |
What’s your delivery time? | 15-35 days after downpayment received |
Do you Accept OEM service? | Yes |
what’s your delivery terms? | FOB/CFR/CIF |
What's the Payment Terms? | 30% as deposit,70% before shipment by T/T |
Western Union acceptable for small amount. | |
L/C acceptable for large amount. | |
Scrow ,Paybal,Alipay are also ok | |
Why choose us? | Chose happens because of quality, then price, We can give you both. Additionally, we can also offer professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposals. |
What's your available port of Shipment? | Main Port, China |
What’s your featured services? | Our service formula: good quality+ good price+ good service=customer's trust
|
Where are your Market? | Covering more than 160 countries in the world |
- Q: How is special steel used in the defense manufacturing process?
- Special steel is commonly used in the defense manufacturing process due to its exceptional strength, durability, and resistance to extreme conditions. It is utilized in the production of various defense equipment and components such as armored vehicles, submarines, aircraft carriers, and ballistic missiles. Special steel is crucial for enhancing the overall performance, reliability, and safety of these defense systems, making it an essential material in the defense manufacturing industry.
- Q: What are the different coating materials used for special steel?
- There are several different coating materials used for special steel, depending on the specific requirements and applications. Some common coating materials include zinc, nickel, chrome, tin, and ceramic coatings. These coatings provide various benefits such as corrosion resistance, improved wear resistance, enhanced aesthetics, and increased durability. The choice of coating material depends on factors like the intended use of the steel, environmental conditions, and desired performance characteristics.
- Q: What is the purpose of annealing in special steel production?
- The purpose of annealing in special steel production is to improve the steel's mechanical properties and reduce its internal stresses. This process involves heating the steel to a specific temperature and holding it at that temperature for a certain period of time, followed by controlled cooling. Annealing helps to enhance the steel's ductility, toughness, and machinability, making it easier to work with and ensuring consistent and reliable performance in various applications.
- Q: What are the different surface defects in special steel?
- There are several different surface defects that can occur in special steel. Some of the common defects include: 1. Scale: Scale is a thin layer of oxide that forms on the surface of steel during the manufacturing process. It can appear as a flaky or powdery substance and can be caused by exposure to high temperatures or improper cooling. Scale can affect the appearance and quality of the steel surface. 2. Pitting: Pitting is the formation of small, localized holes or depressions on the surface of the steel. It can be caused by corrosion, improper cleaning or surface preparation, or exposure to harsh environments. Pitting can weaken the steel and make it more susceptible to further corrosion. 3. Scratches: Scratches are physical marks or indentations on the surface of the steel. They can occur during handling, transportation, or processing of the steel. Scratches can affect the appearance and integrity of the steel surface and may need to be repaired or removed. 4. Roll marks: Roll marks are impressions or patterns left on the steel surface during the rolling process. They can appear as lines, grooves, or ridges and can be caused by uneven pressure or improper alignment of the rolling equipment. Roll marks can affect the surface smoothness and may require additional processing or polishing to remove. 5. Inclusions: Inclusions are foreign particles or substances that are embedded within the steel. They can be caused by impurities in the raw materials or contamination during the manufacturing process. Inclusions can weaken the steel and may lead to cracks or fractures. 6. Decarburization: Decarburization is the loss of carbon from the surface layer of the steel. It can occur during heating or annealing processes, and it can result in reduced hardness and strength of the steel surface. Decarburization is usually undesirable in special steel as it affects its performance. These are just some of the surface defects that can occur in special steel. It is important to identify and address these defects to ensure the quality and performance of the steel product.
- Q: What is the role of special steel in sustainable manufacturing?
- Special steel plays a crucial role in sustainable manufacturing by offering enhanced durability, strength, and corrosion resistance, resulting in longer-lasting and more efficient products. It enables the development of lightweight yet robust components, reducing material consumption and energy consumption during production and usage. Additionally, special steel can be easily recycled, contributing to the circular economy and minimizing environmental impact.
- Q: How does special steel contribute to improving product lifespan?
- Special steel contributes to improving product lifespan in several ways. Firstly, it offers enhanced durability and strength, allowing products to withstand heavy usage, high temperatures, and harsh environments without succumbing to wear and tear. This increased resilience helps prevent premature failure and extends the lifespan of the product. Additionally, special steel often possesses excellent corrosion resistance properties, protecting the product from rust and degradation caused by exposure to moisture or chemicals. Moreover, special steel's superior machinability and formability enable the production of complex and precise components, reducing the risk of structural flaws or defects that could compromise the product's lifespan. Overall, the use of special steel in manufacturing contributes significantly to producing long-lasting, reliable, and high-quality products.
- Q: How is corrosion-resistant steel different from regular steel?
- Corrosion-resistant steel, also known as stainless steel, is different from regular steel because it contains a higher proportion of chromium and other alloying elements. These elements form a protective layer on the surface of the steel, preventing it from rusting or corroding when exposed to moisture or aggressive environments. Regular steel, on the other hand, lacks this protective layer and is more prone to rust and corrosion.
- Q: What are the different methods of heat treatment for special steel?
- There are several different methods of heat treatment for special steel, each designed to enhance specific properties of the steel. These methods include: 1. Annealing: This method involves heating the steel to a specific temperature and then slowly cooling it, typically in a controlled atmosphere. Annealing helps to relieve internal stresses, improve machinability, and soften the steel for further processing. 2. Normalizing: Normalizing is a heat treatment process that involves heating the steel to a temperature above its critical temperature and then air cooling it in still air. This method is commonly used to refine the grain structure of the steel, improve its mechanical properties, and enhance its strength and toughness. 3. Quenching: Quenching is a method that involves rapidly cooling the steel from a high temperature by immersing it in a quenching medium such as oil, water, or brine. This process results in the formation of a very hard and brittle structure known as martensite, which increases the steel's hardness and wear resistance. 4. Tempering: Tempering is performed after quenching and involves reheating the steel to a specific temperature and holding it there for a certain period of time, followed by air cooling. This process helps to reduce the brittleness of the steel caused by quenching and improves its toughness, ductility, and impact resistance. 5. Austempering: Austempering is a heat treatment method that involves quenching the steel from a high temperature and then holding it at a specific temperature for a prolonged period of time. This process produces a structure called bainite, which provides a combination of strength, toughness, and ductility. 6. Martempering: Martempering is a variation of quenching that involves cooling the steel to a temperature just above its martensitic transformation range and then holding it at that temperature until it becomes uniformly cooled. This method reduces the risk of distortion and cracking compared to traditional quenching and provides improved toughness and dimensional stability. 7. Induction hardening: Induction hardening is a surface heat treatment method used to selectively harden specific areas of the steel. It involves heating the surface of the steel using induction heating and then rapidly quenching it. This process results in a hardened surface layer while maintaining the toughness and ductility of the core. These different methods of heat treatment for special steel provide a range of options to optimize the desired properties of the steel, depending on the specific application and requirements.
- Q: What are the challenges in welding special steel alloys?
- Welding special steel alloys presents various obstacles due to their distinct properties and composition. Key challenges encountered when welding special steel alloys include the following: 1. Elevated melting point: Special steel alloys typically possess higher melting points compared to regular steel, necessitating increased heat input during the welding process. This can create difficulties in achieving proper fusion and may require specialized welding equipment and techniques. 2. Disparity in thermal expansion: Special steel alloys may exhibit different coefficients of thermal expansion in comparison to the base metal or other materials being joined. This can result in the development of stress and distortion during welding, impacting the structural integrity of the welded joints. 3. Heat sensitivity: Certain special steel alloys are more susceptible to heat-affected zone (HAZ) cracking and other forms of weld defects. The heightened heat input during welding can induce the formation of brittle phases or precipitates, leading to reduced mechanical properties and potential weld failures. 4. Metallurgical alterations: Welding special steel alloys can bring about significant metallurgical changes in the base metal and the heat-affected zone. These changes encompass the formation of new microstructures, variations in hardness, and modifications in chemical composition. Such alterations can affect the overall performance and properties of the welded joints. 5. Pre-weld and post-weld treatments: Specific pre-weld and post-weld treatments are often required for special steel alloys to minimize the risk of weld defects and optimize the properties of the welded joints. These treatments may encompass preheating, post-weld heat treatment, or the utilization of specialized filler metals to ensure adequate weld integrity. 6. Limited consumable availability: Special steel alloys may have a limited selection of suitable consumables, such as filler metals and shielding gases, which are vital for achieving high-quality welds. The absence of appropriate consumables can make it challenging to find compatible materials that offer sufficient strength and corrosion resistance in the welded joints. To overcome these challenges effectively, it is essential to possess a comprehensive understanding of the specific properties and requirements of the special steel alloy being welded. The utilization of proper welding techniques, including heat control, filler material selection, and post-weld treatments, is crucial to ensure welds of superior quality with optimal mechanical properties and structural integrity. Moreover, collaborating with material suppliers, welding experts, and adhering to industry standards and guidelines can facilitate the effective resolution of challenges associated with welding special steel alloys.
- Q: What are the different methods of non-destructive testing for special steel?
- There are several methods of non-destructive testing (NDT) for special steel, including magnetic particle testing, ultrasonic testing, radiographic testing, eddy current testing, and liquid penetrant testing. These techniques allow for the detection of defects or abnormalities in the material without causing any damage to the steel. Each method has its own advantages and limitations, and the choice of method depends on the specific requirements and characteristics of the steel being tested.
Send your message to us
Dia.8mm Grade SAE 1006 Coils Steel Wire Rod
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 10 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords