Grade SAE 4340 Alloy Steel Price List Hot Rolled
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 3 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Specification
Product Description:
Round bar | |||||||
Dia:16mm~700mm | Length:2m~6m | ||||||
Flat bar | |||||||
Thickness:20mm~500mm | Length:2m~12m | ||||||
Dimensions can be customized |
OKorder is offering Grade SAE 4340 carbon steel at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.
Product Applications:
Grade SAE4340 carbon steels are ideal for structural applications and are widely used in the construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries.
Product Advantages:
OKorder's Grade SAE51200/ GCr15 / 100cr6 Bearing Steel are durable, strong, and resist corrosion.
Chemical Composition:
Comparative standard | Grade | C | Si | Mn | Cr | Mo | P | S | Ni |
GB | 40CrNiMoA | 0.36-0.44 | 0.10-0.350 | 0.45-0.70 | 1.10-1.40 | 0.20-0.35 | 0.03 | 0.02 | 1.30-1.7 |
AISI | 4337/4340 |
|
|
|
|
|
|
|
|
JIS | SNCM8 |
|
|
|
|
|
|
|
|
DIN | 34CrNiMo6/1.6582 | 0.34 | max 0.40 | 0.65 | 1.5 | 0.23 | 0.03 | 0.03 | 1.5 |
Packaging & Delivery of Carbon Steel
Standard seaworthy packing or as customer required
Delivery time:
Within 30 days after order is confirmed.
- Q: What are the different surface coating methods used for special steel?
- There are several surface coating methods that are commonly used for special steel to enhance its properties and protect it from various environmental factors. These methods include: 1. Galvanizing: This is a process in which a layer of zinc is applied to the surface of the steel. It provides excellent corrosion resistance and can be done through hot-dip galvanizing or electroplating. 2. Electroplating: In this method, a thin layer of metal such as chromium, nickel, or copper is deposited onto the steel surface through an electrochemical process. This improves the steel's appearance, wear resistance, and corrosion resistance. 3. Powder coating: Powder coating involves applying a dry powder to the steel surface, which is then heated and fused to form a protective layer. It provides excellent durability, weather resistance, and aesthetic appeal. 4. Thermal spray coating: This method involves spraying a molten or heated material onto the steel surface, which then solidifies to form a protective coating. Materials commonly used for thermal spray coating include metals, ceramics, and polymers. 5. Paint coating: Painting is a commonly used method for surface coating. Different types of paints, such as epoxy, polyurethane, or acrylic, can be applied to the steel surface to provide protection against corrosion, chemicals, and UV radiation. 6. PVD coating: Physical Vapor Deposition (PVD) is a process in which a thin film of a material, such as titanium nitride or diamond-like carbon, is deposited onto the steel surface through a vacuum deposition process. PVD coatings enhance hardness, wear resistance, and appearance. 7. Anodizing: Anodizing is primarily used for aluminum, but it can also be applied to special steel. This process involves creating an oxide layer on the steel surface through an electrochemical reaction, which improves corrosion resistance and adds a decorative finish. These surface coating methods are essential for special steel as they provide enhanced protection against corrosion, wear, and other environmental factors, thereby extending the lifespan and improving the performance of the steel. The choice of coating method depends on the specific requirements and desired properties of the steel.
- Q: Can special steel be used in the energy sector?
- Yes, special steel can be used in the energy sector. Special steel, which is engineered and designed to have specific properties like high strength, corrosion resistance, and heat resistance, can be utilized in various applications within the energy sector. It can be used for manufacturing components of power plants, such as turbines, generators, boilers, and heat exchangers, as well as in offshore oil and gas platforms, pipelines, and wind turbines. The unique properties of special steel make it suitable for withstanding the demanding conditions and requirements of the energy sector, ensuring reliability and longevity of these critical infrastructure components.
- Q: What are the different methods for improving the electrical conductivity of special steel?
- Special steel can have improved electrical conductivity through various methods. One common approach involves adding alloying elements like copper or silver, which increase the number of free electrons in the steel, thereby enhancing its electrical conductivity. Another option is subjecting the steel to heat treatment processes like annealing or normalizing. These heat treatments refine the steel's microstructure, reducing impurities and promoting electron movement. Surface treatments, such as electroplating or coating the steel with conductive materials like copper or nickel, also enhance its electrical conductivity. These treatments create a conductive layer on the steel's surface, facilitating better electron flow. Furthermore, refining the steel's grain size through techniques like grain boundary engineering or severe plastic deformation can improve its electrical conductivity. Smaller grain sizes enable more efficient electron movement and minimize scattering, resulting in improved conductivity. Lastly, proper cleaning and removal of surface contaminants or oxides significantly enhance the electrical conductivity of special steel. By eliminating impurities and ensuring a clean surface, the steel can establish better contact and conductivity. It is important to consider that the specific method chosen to improve the electrical conductivity of special steel depends on the intended application and the desired level of conductivity. Different industries and applications may require tailored approaches to achieve the desired outcomes.
- Q: What are the different marine grades of special steel?
- There are several marine grades of special steel commonly used in marine applications. Some of the most widely known grades include 316, 316L, and 2205. These grades are specifically designed to resist corrosion and maintain their strength and integrity in harsh marine environments. Additionally, other grades such as 304 and 904L are also used in marine applications for their corrosion resistance properties.
- Q: How does special steel contribute to the hardness of products?
- Special steel contributes to the hardness of products through its unique composition and manufacturing processes. Unlike regular steel, special steel is alloyed with additional elements such as chromium, nickel, and manganese, which enhance its strength and durability. These alloying elements form solid solutions within the steel matrix, creating a more rigid and dense structure. The presence of these alloying elements in special steel allows for the formation of various microstructures, such as fine-grained structures or martensitic structures, which significantly increase the hardness of the steel. Moreover, special steel often undergoes heat treatment processes like quenching and tempering, which further refine its microstructure and improve its hardness. Additionally, the manufacturing processes used for special steel, such as hot rolling or cold working, can also contribute to its hardness. These processes deform the steel, aligning its grain structure and reducing any defects or impurities present, leading to a more uniform and harder material. The hardness of special steel is crucial in various industries where strength and resistance to wear and deformation are essential. For example, in the automotive industry, special steel is used to manufacture components like engine parts, gears, and axles, which require high hardness to withstand the demanding conditions and loads they experience. Similarly, in the construction industry, special steel is used for producing tools, cutting blades, and reinforcement bars, where hardness is crucial for longevity and performance. In summary, special steel contributes to the hardness of products through its unique alloying elements, manufacturing processes, and heat treatments. Its ability to form microstructures and its resistance to deformation make it an ideal material for applications where hardness is essential for performance and durability.
- Q: What are the common challenges in heat treatment of special steel?
- The heat treatment of special steel presents several common challenges that need to be carefully addressed in order to achieve desired material properties. One of the key challenges is the need for precise temperature control during the heating and cooling processes. Special steels often have specific heat treatment temperature ranges that need to be strictly followed to achieve the desired microstructure and mechanical properties. Failure to maintain precise temperature control can result in inadequate or inconsistent heat treatment, leading to suboptimal material performance. Another challenge is the potential for distortion or warping of the steel components during the heat treatment process. Special steels often have complex shapes or intricate designs, making them more susceptible to distortion when exposed to high temperatures. This distortion can negatively impact the dimensional accuracy and overall quality of the final product. Hence, careful consideration must be given to the selection of appropriate heating and cooling methods, as well as the use of fixtures or jigs to minimize distortion. Furthermore, special steels may contain alloying elements that can have a significant influence on the heat treatment process. Alloying elements such as chromium, molybdenum, or vanadium can alter the hardenability, tempering response, or transformation behavior of the steel. These elements may introduce additional challenges when determining the optimal heat treatment parameters, as their presence can necessitate adjustments to the heating and cooling rates, soak times, or quenching media. Lastly, achieving uniformity in heat treatment across a batch of special steel components can be a challenge. Variations in size, shape, or composition within a batch can lead to inconsistent heat treatment results. Controlling the heating and cooling rates, ensuring proper circulation of the heat treatment media, and implementing effective process monitoring techniques are essential for achieving consistent and uniform material properties. In conclusion, the common challenges in heat treatment of special steel include precise temperature control, distortion/warping, the influence of alloying elements, and achieving uniformity across a batch. Addressing these challenges requires a thorough understanding of the steel's composition, careful process planning, and the use of appropriate process controls and monitoring techniques.
- Q: How does special steel perform in high-temperature mechanical fatigue conditions?
- Special steel performs well in high-temperature mechanical fatigue conditions due to its unique composition and properties. It exhibits excellent strength, toughness, and heat resistance, enabling it to withstand cyclic loading and high temperatures without experiencing significant degradation or failure. The special steel's exceptional performance in such conditions makes it an ideal choice for applications that involve continuous exposure to elevated temperatures and mechanical stresses, ensuring long-term reliability and durability.
- Q: What are the main characteristics of high-speed steel forgings?
- The main characteristics of high-speed steel forgings include high hardness, excellent wear resistance, good toughness, and the ability to retain their hardness and strength at elevated temperatures. They also exhibit good machinability, high dimensional stability, and resistance to deformation under heavy loads.
- Q: How does special steel perform in terms of thermal conductivity?
- Special steel typically has lower thermal conductivity compared to other materials like aluminum or copper. This means that it is not as efficient in conducting heat, but it can still be used in applications where high temperatures need to be controlled or insulated, such as in industrial furnaces or high-temperature equipment.
- Q: How is special steel used in the automotive industry?
- Special steel is used in the automotive industry for various applications such as manufacturing engine components, transmission systems, and chassis parts. Its high strength, durability, and resistance to corrosion make it ideal for ensuring the safety, performance, and longevity of vehicles. Additionally, special steel is used in the production of specialized tools and machinery required for automotive manufacturing processes.
Send your message to us
Grade SAE 4340 Alloy Steel Price List Hot Rolled
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 3 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords