• SUN-500G-WAL Wind power grid tie inverter/500w System 1
SUN-500G-WAL Wind power grid tie inverter/500w

SUN-500G-WAL Wind power grid tie inverter/500w

Ref Price:
get latest price
Loading Port:
Ningbo
Payment Terms:
TT OR LC
Min Order Qty:
-
Supply Capability:
1000 kg/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 Grid Tie Inverter for Wind Turbine

                         Model: SUN-500G_WAL


l  Build In Rectifier

l  Build In Dump Load Controller

l  Build In High Wind Protection

Preface

The grid-tie inverter can transfer wind energy from wind generators directly into the home grid using no extra equipment. It can be connected to any outlet (conventional network) in the home. The grid-tie inverter controls the phase and the frequency and voltage of the power generated by the wind generator. It produces a pure sine-wave and matches that of the grid.

This model grid-tie has build in bridge rectifier and dump load controller, it can maintain the rotating speed of the wind turbine and keep the voltage from the wind turbine always at the range of the rated range of the grid tie inverter. It also has a high voltage protection function, when the wind is too big, and the dump load controlling system can’t keep the output voltage from the wind turbine, the controller will disconnect itself from the wind turbine, so it is very safe to be used.

There are 5 terminals on the left side of the inverter, 3 red terminals will be connected to the three phase output from the wind turbine, and 2 black terminals will be connected to dump load resistors.

There are 4 LED indicators, 3 green indicators and 1 red indicator, 3 green LED indicators will start to cycle from left to right when the grid and AC input supply is detected. This indicates the inverter is operating under normal condition. The rate of the cycling is according to how much power is being output from the wind turbine. The bigger the output power is, the faster the rate is. If there is no AC grid detected, the red LED will be on, the inverter will not put out power, this is called “Island Protection”.

Electrical Specifications:

Model

SUN-500G_WAL

Normal AC Output Power

450W

Maximum AC Output Power

500W

AC  Output Voltage Range

110V/230V

90V ~ 130V / 190V~260V

AC Output Frequency Range

46Hz ~ 65Hz

Total Harmonic Distortion(THD)

<5%

Power Factor

0.99

DC Input Voltage Range

(the test point is at the output of the rectifier)

22V~60V/10.8-30V

Peak Inverter Efficiency

92%

Standby Power consumption

<1.5W

Output Current Waveform

Pure Sine-wave

MPPT Function

Yes

Over Current Protection

Yes

Over Temperature Protection

Yes

Reverse Polarity Protection

Yes

Island Protection

Yes

Stackable

Yes

Mechanical Specifications:

N.W

4.0kg

G.W

4.5Kg

Dimension

332mm*265mm*135mm


Operating Temperature Range

-10 ~ 45 degrees C

Q: Can a solar inverter be used for off-grid systems?
Yes, a solar inverter can be used for off-grid systems. In fact, it is an essential component of off-grid solar systems as it converts the DC (direct current) electricity generated by the solar panels into AC (alternating current) electricity that can be used to power household appliances and other electrical devices.
Q: Can a solar inverter be used with a string inverter system?
No, a solar inverter cannot be directly used with a string inverter system. A solar inverter converts the direct current (DC) generated by the solar panels into usable alternating current (AC) electricity. On the other hand, a string inverter manages the output of multiple solar panels connected in series, converting the DC power from the panels to AC power for the grid. These two types of inverters serve different functions and are not compatible with each other.
Q: What is the role of a display interface in a solar inverter?
The role of a display interface in a solar inverter is to provide real-time information and control options to the user. It allows them to monitor the performance of the solar inverter, such as power output, energy production, and system status. The display interface also provides access to various settings and configuration options, allowing the user to optimize the performance of the solar inverter based on their specific requirements.
Q: How does a solar inverter handle voltage dips or fluctuations in the grid?
A solar inverter handles voltage dips or fluctuations in the grid by constantly monitoring the grid voltage. When it detects a dip or fluctuation, it rapidly adjusts its output voltage to stabilize the grid voltage. This process is known as grid support or grid-tied operation and ensures that the solar inverter maintains a steady and synchronized connection with the grid, even during voltage disturbances.
Q: What is the difference between a transformerless inverter and a transformer-based inverter?
A transformerless inverter does not include a transformer in its design, while a transformer-based inverter incorporates a transformer as an integral component. The main difference lies in their electrical isolation capabilities and overall system efficiency. Transformerless inverters use circuitry to achieve electrical isolation, which can result in higher efficiency and reduced size. On the other hand, transformer-based inverters employ a physical transformer for isolation, which offers better safety and protection against electrical noise and voltage fluctuations.
Q: Are there any fire safety concerns associated with solar inverters?
Solar inverters do pose some fire safety concerns. Although they are not typically a fire hazard themselves, there are a few potential risks to be aware of. Firstly, if the solar inverter is installed incorrectly, it can cause electrical problems that may lead to a fire. To prevent this, it is essential to hire a qualified and certified professional who can ensure that all electrical connections are secure and meet the necessary standards. Secondly, if the solar inverter is located in an area that experiences high temperatures or excessive heat, there is a risk of overheating. Inverters generate heat as they convert direct current (DC) from solar panels into alternating current (AC) for use in homes or businesses. If the inverter is not adequately ventilated or is exposed to extreme heat, it can overheat and potentially ignite a fire. Furthermore, if the inverter is faulty or damaged, it can increase the risk of fire. Regular maintenance and inspections of the solar inverter can help identify any potential issues and ensure its safe operation. To address these fire safety concerns, it is crucial to adhere to proper installation guidelines, regularly inspect and maintain the inverter, and ensure it is in a well-ventilated location away from sources of excessive heat. It is also advisable to have a fire extinguisher nearby and establish a fire safety plan in case of emergencies.
Q: What is the difference between a centralized and decentralized solar inverter system?
A centralized solar inverter system involves connecting multiple solar panels to a single inverter, with all the panels connected in series. The combined DC power generated by the panels is then converted into AC power by the centralized inverter. On the other hand, a decentralized solar inverter system, also known as microinverters or power optimizers, consists of each solar panel having its own dedicated inverter. In this system, each panel operates independently and converts its DC power into AC power directly at the panel level. The main distinction between the two systems lies in their architecture and power conversion methods. In a centralized system, the overall power output of the entire array depends on the performance of a single inverter. If any panel in the array underperforms due to shading or malfunction, it can significantly impact the overall system's performance. Additionally, a single inverter can limit design flexibility and system scalability. In a decentralized system, each panel operates independently, allowing for greater flexibility and optimization. The individual inverters in a decentralized system can maximize the power output of each panel, regardless of shading or performance variations. This also means that the overall system performance is less affected by the underperformance of a single panel. Moreover, decentralized systems offer better scalability as additional panels can be easily added without the need for significant system redesign. Decentralized systems also provide improved monitoring capabilities, as each inverter can provide real-time data on individual panel performance. This simplifies troubleshooting, maintenance, and issue identification within the solar array. To summarize, while a centralized solar inverter system is a simpler and more cost-effective option, a decentralized system offers better optimization, scalability, monitoring, and performance reliability. Choosing between the two systems depends on factors such as system size, shading conditions, budget, and desired level of control and flexibility.
Q: Can a solar inverter be used in regions with high levels of dust or debris?
Yes, solar inverters can be used in regions with high levels of dust or debris. However, it is important to regularly clean and maintain the solar panels and inverters to ensure optimal performance and prevent any potential damage caused by the accumulation of dust or debris.
Q: What is the standby power consumption of a solar inverter?
The standby power consumption of a solar inverter refers to the amount of power that the inverter consumes when it is in standby mode or not actively converting solar energy into usable electricity. This power consumption is generally very low, typically ranging from 1 to 5 watts, as the inverter only needs to maintain its internal circuitry and monitor the solar energy availability.
Q: Can a solar inverter be used with different types of energy storage systems?
Yes, a solar inverter can be used with different types of energy storage systems. Solar inverters are designed to convert the direct current (DC) generated by solar panels into alternating current (AC) that can be used to power electrical devices. The AC output from the solar inverter can be connected to various energy storage systems, such as batteries, to store excess energy generated by the solar panels for later use. Therefore, solar inverters are compatible with different types of energy storage systems, allowing for efficient utilization of solar energy.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords