• Single Phase Inverter Second Generation 3.0k Solar Inverter made in China System 1
  • Single Phase Inverter Second Generation 3.0k Solar Inverter made in China System 2
  • Single Phase Inverter Second Generation 3.0k Solar Inverter made in China System 3
Single Phase Inverter Second Generation 3.0k Solar Inverter made in China

Single Phase Inverter Second Generation 3.0k Solar Inverter made in China

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
0 watt
Supply Capability:
10000 watt/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Description of Single Phase Inverter Second Generation 3k Solar Inverter

Solar ac power system consists of solar panels, charge controllers, inverter and battery; Solar energy does not include inverter dc power system. Inverter is a kind of power conversion device, inverter by incentives can be divided into self-excited oscillation inverter and separately excited oscillation inverter.

 

Features of Single Phase Inverter Second Generation 3k Solar Inverter

Standard 10 years warranty, 5-15 years optional

Built-in Gprs as option

Built-in Wifi as option

Smaller and lighter, only 9.6kg

High performance DSP for algorithm control

VDE-AR-N 4105 certification

New topology design

Dual MPPT design

Multi-button touch interface

LCD screen visible at night

Have anti-shading function

 

Advantages of Single Phase Inverter Second Generation 3k Solar Inverter

Longer life cycle

Plug and play

Free monitoring through our webportal

Very lower internal temperature

Easy transportation and installation

Faster CPU speed

Adjustable active and reactive power

Maximum conversion effciency up to 97.7%,Euro up to 97.0%

Real-time data readable at night

User friendly operation

 

 

Technical Data of Single Phase Inverter Second Generation 3k Solar Inverter

 

 

Type

Omniksol-3k-TL2-S

Input(DC)

Max.PV Power

3250W

Max,DC Voltage

500V

Nominal DC Voltage

360V

Operating MPPT Voltage Range

120-450V

MPPT Voltage Range at Nominal Power

150-450V

Start up DC Voltage 

150V

Turn off DC Voltage

120V

Max, DC Current

18A/18A

Max, Short Cicuit Current for each MPPT

20A/20A

Number of MPP trackers

1

Number of DC Connection for each MPPT

1

DC Connection Type

MC4 connector

 

 

Output(AC)

Max,AC Apparent Power

3000VA

Nominal AC Power (cos phi = 1)

3000W

Nominal Grid Voltage

220V/230V/240V

Nominal Grid Frequency

50Hz/60Hz

Max, AC Current

14.0A

Grid Voltage Range*

185-276V

Grid Frequency Range*

45-55Hz/55-65Hz

Power Factor

0.9 capacitive... 0.9 inductive

Total Harmonic Distortion(THD)

<2%

Feed in Starting Power

30W

Night time Power Consumption

<1W

Standby Consumption

6W

AC Connection Type

Plug-in connertor

 

Efficiency

Max,Efficiency

97.7%

Euro Efficiency

97.0%

MPPT Efficiency

99.9%

 

Safety and Protection

DC Insulation Monitoring

Yes

DC Switch

Optional

Residual Current Monitoring Unit (RCMU)

Integrated

Grid Monitoring with Anti-islanding

Yes

Protection Class

Ⅰ(According to IEC 62103)

Overvoltage Category

 

PVⅡ/Mains Ⅲ(According to IEC 62109-1)

 

Electricity Fuse Protection

Yes

 

Reference Standard

Safety Standard

EN 62109, AS/NZS 3100

EMC Standard

EN 6100-6-1, EN 6100-6-2, EN 6100-6-3 EN 6100-6-4, EN 6100-3-2, EN 6100-3-3

Grid Standard

VDE-AR-N4105. VDE-0126-1-1,G83/1,EN 50438,RD1699,CEI 0-21, AS4777,C10/C11

 

Physical Structure

Dimensions

343x281x150mm

Weight

9.9kg

Environmental Protection Rating

IP 65 (According to IEC 60529)

Cooling Concept

Internal fan convection

Mounting Information

Wall bracke

 

 

General Data

Operating Temperature Range

-25℃ to +60℃(derating above 45℃)

Relative Humidity

0% to 98%, no condensation

Max. Altitude (above sea level)

2000m

Noise Type

<40dB

Isolation Type

Transformerless

Display

3 LED ,Backlight, 4x20 Character LCD

Data Communication

RS485(WiFi, GRPS integrated)

Computer Communication

USB

Standard Warranty

10 Years (5-15 years optional)

 

 

IMages of Single Phase Inverter Second Generation 3k Solar Inverter

 

Single Phase Inverter Second Generation 3.0k Solar Inverter made in China

Single Phase Inverter Second Generation 3.0k Solar Inverter made in China

Single Phase Inverter Second Generation 3.0k Solar Inverter made in China

 

FAQ

Q: Do you have the CE, TUV, UL Certification?

A: We’ve already passed all the tests, and any certificate is available.

Q: Have you ever sold your products to companies in my country?

A: Of course, we have customers in all general PV markets, but I think we should expand our market share along with the market growth.

Q: When did your company set up?  You are a new company, how can I believe your quality?

A: We entered into Solar PV industry in 2005, now we have several plants in manufacturing of a-Si and c-Si panels, and our capacity is 220MW per year. Till now we have already passed all the tests by authorized laboratories, e.g. TUV, CE, UL.

 Q: Can you help us install the module if we cooperate with you?

A: We haven’t entered into installation sector, but we have the plan in near future.

Q: How do you pack your products?

A: We have rich experience on how to pack the panels to make sure the safety on shipment when it arrives at the destination.

Q: Can you do OEM for us?

A: Yes, we can.

Q: Can we visit your factory?

A: Surely, I will arrange the trip basing on your business schedule.

Q:How do you calculate the maximum power point tracking range for a solar inverter?
To calculate the maximum power point tracking (MPPT) range for a solar inverter, you need to determine the voltage and current range within which the solar panels can produce the maximum power output. This involves analyzing the voltage-current (V-I) curve of the solar panels under different irradiance and temperature conditions. By continuously monitoring the output of the solar panels, the MPPT algorithm in the inverter adjusts the operating point to match the maximum power point, ensuring optimal energy conversion. Therefore, the MPPT range is determined by the variations in irradiance, temperature, and the characteristics of the solar panels, and it can be calculated through experimentation or by referring to the manufacturer's specifications.
Q:What is the role of a power management system in a solar inverter?
The role of a power management system in a solar inverter is to efficiently manage the flow of electricity from the solar panels to the grid or the connected devices. It ensures that the power generated by the solar panels is optimized, regulated, and synchronized with the grid's requirements. The power management system helps in maintaining the stability and reliability of the solar inverter system by monitoring, controlling, and adjusting the power flow, voltage levels, and frequency to prevent overloading or underutilization of the solar energy.
Q:What is the role of reactive power injection in a solar inverter?
The role of reactive power injection in a solar inverter is to improve power factor and stabilize the voltage in the electrical grid. By injecting reactive power, the inverter helps balance out the reactive power demand from other loads in the grid, reducing the strain on the system and ensuring efficient power transfer. This helps maintain grid stability and prevents voltage fluctuations, ultimately enhancing the overall performance and reliability of the solar power system.
Q:What is the maximum operating altitude for a solar inverter?
The maximum operating altitude for a solar inverter typically varies depending on the specific model and manufacturer. However, on average, most solar inverters can operate effectively at altitudes up to 4,000 meters (13,123 feet) above sea level. It is important to consult the manufacturer's specifications or user manual for the precise altitude limitations of a particular solar inverter.
Q:Can a solar inverter be used with a solar-powered air conditioning system?
Yes, a solar inverter can be used with a solar-powered air conditioning system. The solar inverter converts the direct current (DC) electricity generated by the solar panels into alternating current (AC) electricity, which is used to power the air conditioning system. This allows the air conditioning system to run efficiently and effectively using solar energy.
Q:What is the role of a data logger in a solar inverter?
The role of a data logger in a solar inverter is to collect and store data related to the performance and operation of the solar panels and the inverter. It records important information such as the amount of energy produced, the voltage and current levels, as well as any faults or errors that may occur. This data is then used for analysis, monitoring, and troubleshooting purposes, allowing users to optimize the performance and efficiency of their solar energy system.
Q:Can a solar inverter be used with different solar panel technologies?
Yes, a solar inverter can be used with different solar panel technologies as long as the output voltage and current specifications of the panels are compatible with the inverter. However, it is important to ensure that the inverter is designed to work with the specific characteristics and voltage range of the solar panel technology being used for optimal performance and efficiency.
Q:How does a solar inverter handle voltage transients?
A solar inverter handles voltage transients by continuously monitoring the voltage levels and adjusting its internal circuitry to maintain a stable output voltage. It uses advanced control algorithms and protective features to mitigate the effects of sudden changes in input voltage, such as voltage spikes or dips, ensuring the smooth and reliable operation of the solar power system.
Q:How does a solar inverter handle grid disturbances (voltage sags, swells, flickers)?
A solar inverter handles grid disturbances such as voltage sags, swells, and flickers by continuously monitoring the grid's voltage and adjusting its output accordingly. When a voltage sag occurs, the inverter increases its output voltage to compensate and ensure a stable power supply. Similarly, during a voltage swell, the inverter reduces its output voltage to prevent overloading the system. In the case of flickers, the inverter rapidly responds by regulating its output to minimize any fluctuations and maintain a consistent power flow. Overall, the solar inverter's advanced control mechanisms enable it to effectively manage grid disturbances and ensure reliable operation of the solar power system.
Q:How does a solar inverter handle voltage flicker?
A solar inverter handles voltage flicker by continuously monitoring the voltage fluctuations in the grid and adjusting its output accordingly. It uses advanced control algorithms to stabilize the voltage and maintain a consistent power supply to the connected devices. Additionally, it may have built-in features such as reactive power compensation and voltage regulation to minimize voltage flicker and ensure a smooth and reliable energy conversion process.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords