• Solar Inverter and Charge Controller - Grid Tied 3-Phase CNBM-12000UE System 1
  • Solar Inverter and Charge Controller - Grid Tied 3-Phase CNBM-12000UE System 2
  • Solar Inverter and Charge Controller - Grid Tied 3-Phase CNBM-12000UE System 3
Solar Inverter and Charge Controller - Grid Tied 3-Phase CNBM-12000UE

Solar Inverter and Charge Controller - Grid Tied 3-Phase CNBM-12000UE

Ref Price:
get latest price
Loading Port:
NanJing
Payment Terms:
TT
Min Order Qty:
1 set set
Supply Capability:
1000 per month set/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Features of Grid Tied Solar Inverter 3-Phase CNBM-12000UE

With a R&D team more than 100 engineers,40% of the staff, who has been deeply engaged in the photovoltaic industry for 10 years, CNBM takes the mission to increase the inverter availability and efficiency, putting continuous innovation to make CNBM inverter easier for installation and operation, and more cost-effective for solar plant construction. The full range of CNBM single phase inverters has received VDE, CE, G83/1, G59/2, ENEL2010, VDE4105, C10/C11, AS4777 etc.

The Grid Connected Solar Inverter we can offer is 1.5kw to 20kw.

Introduction of Grid Tied Solar Inverter 3-Phase CNBM-12000UE

Maximum efficiency of 97.8% and wide input voltage range
Integrated DC switch-disconnected
MTL-String
Sound control
Bluetooth/RF technology /Wi-Fi
Transformerless GT topology
5 years warranty (10 years as optional)

Technical data of Grid Tied Solar Inverter 3-Phase CNBM-12000UE

Model

CNBM-10000UE

CNBM-12000UE

Input data (DC)

 

 

Max. DC power

10500W

12500W

Max. DC voltage

1000V

1000V

Start voltage

350V

350V

PV voltage range

180V-1000V

180V-1000V

Max. input current

15A

17A

Number of MPP trackers /strings per MPP tracker

2/2

2/2

Output (AC)

 

Rated AC output power

10000W

12000W

Max. AC power

10000VA

12000VA

Max. output current

16A

19A

Power factor

1

1

THDI

<3%

<3%

AC connection

Three phase

Three phase

Efficiency

 

Max. efficiency

98%

98%

Euro weighted efficiency

97.5%

97.5%

MPPT efficiency

99.5%

99.5%

Protection devices

 

Output over voltage protection-varistor

yes

yes

Ground fault monitoring

yes

yes

Grid monitoring

yes

yes

General Data

 

Dimensions (W / H / D) in mm

740/440/235

740/440/235

Weight

41KG

41KG

Operating temperature range

–25°C ... +60°C

–25°C ... +60°C

Altitude

2000m(6560ft) without derating

Self-Consumption night

< 0.5 W

< 0.5 W

Topology

Transformerless

Cooling concept

Natural

Natural

Environmental Protection Rating

IP65

IP65

Features

 

DC connection

H4/MC4(opt)

H4/MC4(opt)

Display

LCD

LCD

Interfaces: RS485/RS232/Bluetooth / RF/Zigbee/Wifi

yes/yes/opt/opt/opt

Warranty: 5 years / 10 years

yes /opt

Certificates and approvals

CEVDE 0126-1-1DK5940G83/1-1G59/2RD1663EN50438

VDE-AR-N4105CEI-021IEC-62109ENEL-Guide

Grid Tied Solar Inverter 3-Phase CNBM-12000UE is simple national setting of line supply monitoring, Easy country configuration, with Multi-language,display, currently available for most of the countries over the world.With technical creativity and scientific management, the factory established first class R&D and test centers, as well as management and R&D teams comprising of PhDs and masters with overseas qualification.

Figure 1 the application of Grid Tied Solar Inverter 3-Phase CNBM-12000UE

 Grid Tied Solar Inverter 3-Phase CNBM-1200UE

Figure 2 The Stock of Grid Tied Solar Inverter 3-Phase CNBM-12000UE

 

 Grid Tied Solar Inverter 3-Phase CNBM-1200UE

Q: Can a solar inverter be used with solar-powered greenhouse systems?
Yes, a solar inverter can be used with solar-powered greenhouse systems. A solar inverter is an essential component that converts the direct current (DC) generated by solar panels into alternating current (AC), which is required to power electrical devices in the greenhouse. By connecting the solar panels to the solar inverter, the greenhouse systems can effectively utilize the solar energy for various applications such as lighting, heating, and ventilation.
Q: How does a solar inverter handle variations in grid frequency?
A solar inverter handles variations in grid frequency by continuously monitoring the frequency of the grid and adjusting its output accordingly. It is designed to synchronize with the grid frequency and maintain a stable and consistent output, even when the grid frequency fluctuates. This helps to ensure that the solar energy generated is efficiently fed into the grid, without causing any disruption or damage to the inverter or the grid itself.
Q: How does a solar inverter handle voltage harmonics?
A solar inverter handles voltage harmonics by incorporating filters and control algorithms that mitigate harmonics and ensure a smooth and stable output voltage.
Q: What is the role of voltage regulation in a solar inverter?
The role of voltage regulation in a solar inverter is to ensure that the energy generated by the solar panels is converted and delivered to the electrical grid or used within a premises at a stable and appropriate voltage level. It helps to maintain the quality and consistency of the electricity output, protecting the connected devices and ensuring optimal performance of the solar power system.
Q: Can a solar inverter be used with solar-powered emergency backup systems?
Yes, a solar inverter can be used with solar-powered emergency backup systems. The solar inverter converts the direct current (DC) generated by the solar panels into alternating current (AC), which can be used to power various appliances and equipment during emergencies. This allows for the efficient utilization of solar energy stored in batteries to provide backup power when the grid is down.
Q: How does a solar inverter handle voltage sag or drop in the grid?
A solar inverter handles voltage sag or drop in the grid by constantly monitoring the grid voltage. When it detects a drop in voltage, it adapts its operation to ensure that the output voltage from the solar panels matches the grid voltage, thereby stabilizing and compensating for the voltage sag or drop. This helps to maintain a consistent and reliable power supply from the solar panels to the grid.
Q: How do you calculate the power loss in a solar inverter?
To calculate the power loss in a solar inverter, you need to determine the difference between the input power and the output power. Subtracting the output power from the input power will give you the power loss.
Q: How does the power factor correction affect the performance of a solar inverter?
Power factor correction can greatly improve the performance of a solar inverter by ensuring that the power drawn from the grid is utilized efficiently. By correcting the power factor, the inverter reduces the reactive power component and increases the power factor closer to unity. This reduction in reactive power results in a more efficient utilization of the available power, leading to increased energy conversion efficiency and reduced losses in the inverter. Additionally, power factor correction helps in complying with grid regulations and prevents penalties or restrictions imposed by utility companies.
Q: What is the lifespan of a solar inverter?
The lifespan of a solar inverter typically ranges from 10 to 20 years, depending on various factors such as the quality of the inverter, usage patterns, maintenance, and environmental conditions.
Q: What is the role of a solar inverter in a solar-powered desalination system?
The role of a solar inverter in a solar-powered desalination system is to convert the direct current (DC) generated by the solar panels into alternating current (AC) that can be used to power the desalination equipment. It ensures the efficient utilization of solar energy by transforming it into a usable form for the desalination process.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords