• Steel Rebar/Deformed Steel Bar / Iron Rods for Construction/Concrete System 1
  • Steel Rebar/Deformed Steel Bar / Iron Rods for Construction/Concrete System 2
  • Steel Rebar/Deformed Steel Bar / Iron Rods for Construction/Concrete System 3
Steel Rebar/Deformed Steel Bar / Iron Rods for Construction/Concrete

Steel Rebar/Deformed Steel Bar / Iron Rods for Construction/Concrete

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT or LC
Min Order Qty:
100 m.t.
Supply Capability:
30000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

OKorder is offering Steel Rebar/Deformed Steel Bar / Iron Rods for Construction/Concrete at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to African, South American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.

 

Product Applications:

Steel Rebar/Deformed Steel Bar / Iron Rods for Construction/Concrete are ideal for structural applications and are widely usedthe construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries

 

Product Advantages:

OKorder's Steel Rebar/Deformed Steel Bar / Iron Rods for Construction/Concrete are durable, strong, and wide variety of sizes.

 

Main Product Features:

·         Premium quality

·         Prompt delivery & seaworthy packing (30 days after receiving deposit)

·         Can be recycled and reused

·         Mill test certification

·         Professional Service

·         Competitive pricing

 

Product Specifications:

Manufacture: Hot rolled

Grade:HRB400

Certificates: ISO, SGS, BV, CIQ

Packed: prproduct packed in bundles

Deformed Steel Bar

Diameter

(MM)

Cross

Sectional

Area

(MM2)

Theorectical

Weight

(KG/M)

6

28.27

0.222

8

50.27

0.395

10

78.54

0.617

12

113.1

0.888

14

153.9

1.21

16

201.1

1.58

18

254.5

2

20

314.2

2.47

22

380.1

2.98

25

490.9

3.85

28

615.8

4.83

32

804.2

6.31

36

1018

7.99

40

1257

9.87

Grade

Technical data of the original chemical composition (%)

C

Mn

Si

S

P

V

HRB400

≤0.25

≤1.60

≤0.80

≤0.045

≤0.045

0.04-0.12

Physics capability

Yield Strength(N/cm2)

Tensile Strength(N/cm2)

Elongation (%)

≥400

≥570

≥14

 

FAQ:

Q1: Why buy Materials & Equipment from OKorder.com?

A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.

Q2: How do we guarantee the quality of our products?

A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.

Q3: How soon can we receive the product after purchase?

A3: Within three days of placing an order, we will arrange production. The normal sizes with the normal grade can be produced within one month. The specific shipping date is dependent upon international and government factors, the delivery to international main port about 45-60days.

Q4: How many tons of steel products could be loaded in containers?

A4: Usually the steel products are delivered by bulk vessel because of the large quantity and the freight. However, there are no bulk vessel enter some seaports so that we have to deliver the cargo by containers. The 6m steel product can be loaded in 20FT container, but the quantity is changed according to the size, usually from 18tons to 25tons.

 

Images:

 

Q: How are steel rebars classified based on their surface patterns?
There are two main categories for classifying steel rebars, which are based on their surface patterns. These categories include plain rebars and deformed rebars. Plain rebars have a smooth and plain surface without any surface patterns or deformations. They are mainly used in situations where the concrete needs to slide along the rebar, such as in bridges and highway pavements. The smooth surface of plain rebars ensures a strong bond between the steel and concrete, allowing for good load transfer between the two materials. On the other hand, deformed rebars have surface patterns or deformations that improve their bond with concrete. These patterns can take the form of ribs, indentations, or other irregularities. Deformed rebars provide better mechanical anchoring to the concrete, preventing slippage and enhancing the overall structural integrity of reinforced concrete structures. Furthermore, deformed rebars are further classified based on the type and shape of their surface patterns. Some common types include ribbed rebars, indented rebars, and twisted rebars. Ribbed rebars have continuous, evenly spaced ribs along their entire length, ensuring strong bonding strength with the concrete even under heavy loads. Indented rebars have indentations or impressions along their length, increasing the surface area and enhancing the bond between the steel and concrete. Twisted rebars have a twisted pattern along their length, providing additional mechanical interlocking between the rebar and concrete. The choice of rebar surface pattern depends on the specific requirements of the construction project. Factors such as the type of structure, load-bearing capacity, and local building regulations play a crucial role in determining the appropriate classification of steel rebars based on their surface patterns.
Q: What are the different types of steel rebars used in beams and columns?
There are several types of steel rebars commonly used in beams and columns, including carbon steel rebars, epoxy-coated rebars, stainless steel rebars, and galvanized rebars. Each type has its own specific characteristics and advantages, making them suitable for various applications in construction projects.
Q: How are steel rebars protected against damage from chemical exposure?
Steel rebars are protected against damage from chemical exposure through a process called corrosion protection. This involves applying a protective coating, such as epoxy or zinc, to the rebars. Additionally, rebars can be encased in concrete, which acts as a barrier against chemical attacks. These protective measures prevent the rebars from deteriorating and ensure their durability in harsh chemical environments.
Q: How do steel rebars impact the overall energy efficiency of a structure?
Steel rebars can have both positive and negative impacts on the overall energy efficiency of a structure. On one hand, steel rebars can enhance the structural integrity and durability of the building, leading to a longer lifespan and reduced energy consumption for repairs and maintenance. Additionally, steel rebars can be used to reinforce concrete, which provides better insulation and thermal efficiency. On the other hand, the production of steel rebars requires significant energy and emits greenhouse gases, contributing to the carbon footprint of the structure. Therefore, the overall energy efficiency of a structure depends on various factors, including the design, construction techniques, and the use of sustainable materials alongside steel rebars.
Q: How do steel rebars improve the durability of concrete structures?
Steel rebars improve the durability of concrete structures in several ways. Firstly, steel rebars act as reinforcement in concrete, providing added strength and stability to the structure. When combined with concrete, the high tensile strength of steel rebars helps to resist cracking and prevent the structure from collapsing under heavy loads or seismic activities. Secondly, steel rebars help to control the formation and propagation of cracks in concrete structures. Concrete is strong in compression but weak in tension, meaning it tends to crack when subjected to tensile forces. By placing steel rebars strategically within the concrete, these cracks are minimized and prevented from spreading, thus enhancing the overall durability of the structure. Furthermore, steel rebars help to improve the resistance of concrete structures against corrosion. Concrete is highly alkaline, which forms a protective layer around the steel rebars, preventing them from rusting. This corrosion resistance ensures that the rebars maintain their structural integrity over time, reducing the risk of deterioration and enhancing the longevity of the concrete structure. In addition, steel rebars also enhance the fire resistance of concrete structures. Due to their high melting point, steel rebars can withstand high temperatures, thereby preventing the concrete from losing its structural integrity during a fire. This added fire resistance ensures that the concrete structure remains stable and safe in the event of a fire, further enhancing its durability. Overall, the inclusion of steel rebars in concrete structures significantly improves their durability by providing added strength, controlling cracks, enhancing corrosion resistance, and increasing fire resistance. These benefits contribute to the longevity and safety of concrete structures, making them more reliable and sustainable in the long run.
Q: Can steel rebars be used in marine structures?
Yes, steel rebars can be used in marine structures. Steel is a commonly used material in marine construction due to its strength, durability, and resistance to corrosion. However, it is important to use the appropriate type of steel rebars that are specifically designed for marine applications. These rebars are usually made of stainless steel or galvanized steel, which have enhanced corrosion resistance properties compared to regular carbon steel rebars. Additionally, an extra layer of protection such as epoxy coating or cathodic protection systems can be applied to further increase the rebars' resistance to corrosion in harsh marine environments. Regular maintenance and monitoring are also essential to ensure the long-term performance and integrity of steel rebars in marine structures.
Q: Are steel rebars suitable for use in structures with high wind loads?
Yes, steel rebars are suitable for use in structures with high wind loads. Steel rebars, also known as reinforcing bars, are commonly used in construction to provide strength and stability to reinforced concrete structures. They are designed to withstand high tensile forces and are an essential component in ensuring the structural integrity of buildings, especially in areas prone to high wind loads. Steel rebars offer several advantages that make them suitable for use in structures with high wind loads. Firstly, steel has high tensile strength, allowing it to resist the forces generated by wind loads. Unlike other materials like timber or concrete, steel rebars have excellent ductility, making them capable of absorbing and redistributing the energy caused by wind-induced vibrations. Secondly, steel rebars are highly durable and resistant to corrosion, which is essential for structures exposed to harsh weather conditions, including high winds. The use of steel rebars prevents the risk of deterioration or weakening of the structure over time due to wind-induced stresses. Thirdly, steel rebars can be easily molded and shaped to fit the specific design requirements of the structure. This flexibility allows engineers to design and construct buildings that can withstand the varying wind loads experienced in different regions. Overall, steel rebars are a suitable choice for structures with high wind loads due to their high tensile strength, durability, and resistance to corrosion. They provide the necessary reinforcement needed to ensure the longevity and safety of the structure in challenging wind conditions.
Q: How do steel rebars affect the construction cost of high-rise buildings?
High-rise buildings' construction costs are significantly influenced by steel rebars. These reinforced steel bars are vital for providing strength and stability to the structure, particularly in high-rise buildings that face greater structural loads. To begin with, the cost of steel rebars can make up a substantial portion of the overall construction budget. Market fluctuations affect steel rebars' prices, meaning any increase in steel prices can directly impact construction costs. Additionally, high-rise buildings typically require a higher quantity and quality of rebars compared to low-rise structures, further increasing the overall cost. Furthermore, the installation of steel rebars adds to the construction cost due to the need for skilled labor and specialized equipment. Reinforcing concrete with steel rebars necessitates careful planning, precise placement, and adherence to construction codes and safety standards. Hiring experienced and qualified workers results in higher labor costs. Moreover, the use of steel rebars enhances the durability and longevity of high-rise buildings. By reinforcing the structure, rebars improve the building's structural integrity, making it more resistant to forces like earthquakes, wind, and vibrations. This reduces maintenance and repair costs over the building's lifespan, making the initial investment in steel rebars worthwhile. Lastly, steel rebars impact the overall construction timeline and project schedule. As a critical component of the building's structure, installing rebars is typically time-consuming. Delays or errors in this process can lead to project delays and additional costs. Therefore, proper planning, coordination, and supervision are necessary to ensure the efficient and timely installation of rebars, minimizing any potential cost overruns. In conclusion, steel rebars play a crucial role in high-rise building construction, significantly impacting the overall cost. Despite the direct costs of rebars, labor, and specialized equipment, their use ultimately enhances the building's strength, durability, and longevity. Considering the long-term benefits and the importance of structural integrity, including steel rebars is necessary, despite their impact on construction costs.
Q: What is the process of pre-stressing steel rebars?
Steel rebars undergo a process called pre-stressing, wherein a predetermined amount of stress or force is applied to them before they are loaded. This technique is widely employed in the construction industry to enhance the structural strength and durability of concrete structures. The process typically commences with the selection of high-strength steel rebars that possess favorable tensile strength properties. These rebars are commonly crafted from either carbon steel or alloy steel and come in various shapes and sizes, depending on the specific application. Once the rebars are chosen, they are cleaned and coated with a protective layer to prevent corrosion. Subsequently, they are positioned as per the design specifications within the concrete structure, such as beams, columns, or slabs. Next, the pre-stressing process is initiated, which involves two main methods: pre-tensioning and post-tensioning. In pre-tensioning, the rebars are initially tensioned by being fixed to an anchorage point or a sturdy frame. The opposite end of the rebars is then pulled using hydraulic jacks or mechanical devices, exerting a substantial amount of force. Once the desired stress is attained, the rebars are secured in their stressed position by casting concrete around them. After the concrete solidifies, the jacks or devices are released, transferring the stress to the rebars. In post-tensioning, the rebars are initially placed in the concrete structure without any tension. After the concrete solidifies, ducts or channels are created within the structure along the path of the rebars. High-strength steel strands or cables are then inserted through these ducts. The strands are anchored at one end of the structure and tensioned using hydraulic jacks or similar devices. This tensioning process applies a force to the rebars, which is transferred to the concrete, compressing it. Once the desired stress is achieved, the strands are secured and the ducts are filled with grout or mortar for corrosion protection. Both pre-tensioning and post-tensioning techniques yield pre-stressed steel rebars that offer several advantages to concrete structures. These include increased load-carrying capacity, improved resistance to cracking and deformation, enhanced durability, and overall superior structural performance. The process of pre-stressing steel rebars is an essential aspect of modern construction practices, guaranteeing the longevity and safety of various types of concrete structures.
Q: How do steel rebars affect the overall creep and shrinkage of concrete structures?
Steel rebars have a significant influence on the overall creep and shrinkage of concrete structures. The presence of rebars helps to control and minimize the shrinkage of concrete by providing restraint and reducing the amount of drying shrinkage. Additionally, rebars contribute to the overall stiffness of the structure, decreasing the potential for creep deformation over time. Therefore, steel rebars play a crucial role in mitigating both creep and shrinkage in concrete structures, ensuring their stability and durability.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords