• Hot Rolled Carbon Steel Rebar 16-25mm with High Quality System 1
  • Hot Rolled Carbon Steel Rebar 16-25mm with High Quality System 2
  • Hot Rolled Carbon Steel Rebar 16-25mm with High Quality System 3
Hot Rolled Carbon Steel Rebar 16-25mm with High Quality

Hot Rolled Carbon Steel Rebar 16-25mm with High Quality

Ref Price:
get latest price
Loading Port:
China Main Port
Payment Terms:
TT or LC
Min Order Qty:
25 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 

Product Description:

OKorder is offering Hot Rolled Carbon Steel Rebar 16-25mm with High Quality at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.

 

Product Applications:

Hot Rolled Carbon Steel Rebar 16-25mm with High Quality is widely used in buildings, bridges, roads and other engineering construction. Big to highways, railways, bridges, culverts, tunnels, public facilities such as flood control, dam, small to housing construction, beam, column, wall and the foundation of the plate, deformed bar is an integral structure material. With the development of world economy  and the vigorous development of infrastructure construction, real estate, the demand for deformed bar will be larger and larger..

 

Product Advantages:

OKorder's Hot Rolled Carbon Steel Rebar 16-25mm with High Quality are durable, strong.packed and suitable for construction

 

Main Product Features:

·         Premium quality

·         Prompt delivery & seaworthy packing (30 days after receiving deposit)

·         Can be recycled and reused

·         Mill test certification

·         Professional Service

·         Competitive pricing

 

Product Specifications:

Manufacture: Hot rolled

Grade: HRB335 HRB400 BS4449 Grade460 ASTM Grade40 Grade60

Certificates: ISO, SGS, BV, CIQ

Length:6m 8m 9m 12m

Packaging: Export packing, packed by coil

 

FAQ:

Q1: Why buy Materials & Equipment from OKorder.com?

A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.

Q2: How do we guarantee the quality of our products?

A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.

Q3: How soon can we receive the product after purchase?

A3: Within three days of placing an order, we will begin production. The specific shipping date is dependent upon international and government factors, but is typically 7 to 10 workdays.

Q4: How many tons per bundle?

A4: Around 2-3tons

Q5: How to avoid the rust after deliver the goods to the loading port?

A5: We will keep the goods at the port covered with water-proof material

Q6: What is the chemical composition and physical properties of HRB400?

A6:

 

Grade

Technical data of the original chemical composition (%)

C

Mn

Si

S

P

V

HRB400

≤0.25

≤1.60

≤0.80

≤0.045

≤0.045

0.04-0.12

Physical capability

Yield Strength (N/cm²)

Tensile Strength (N/cm²)

Elongation (%)

≥400

≥570

≥14

Q7:What is the weight per meter for the common sizes:

A7:

 

Diameter(mm)

Section area (mm²)

Mass(kg/m)

Weight of 12m bar(kg)

10

78.54

0.617

7.404

12

113.1

0.888

10.656

14

153.9

1.21

14.52

16

201.1

1.58

18.96

18

254.5

2.00

24

20

314.2

2.47

29.64

22

380.1

2.98

35.76

25

490.9

3.85

46.2

28

615.8

4.83

57.96

32

804.2

6.31

75.72

36

1018

7.99

98.88

40

1257

9.87

118.44

50

1964

15.42

185.04

 

 Images:

 

Q: Can steel rebars be used in road and bridge construction?
Yes, steel rebars can be used in road and bridge construction. Steel rebars are commonly used as reinforcement in concrete structures, including roads and bridges, to provide strength and durability. The rebars are embedded within the concrete to enhance its tensile strength and prevent cracking or structural failure. Steel rebars are preferred in such constructions due to their high strength, ductility, and resistance to corrosion. They help to distribute loads and stresses evenly, making the structures more resilient and capable of withstanding heavy traffic and environmental conditions. Additionally, steel rebars can be easily fabricated and customized to meet the specific design requirements of road and bridge construction projects.
Q: What are the different types of steel rebars used in high-rise buildings?
High-rise buildings commonly utilize various types of steel rebars due to their strength and durability. These include: 1. Mild Steel Rebars, also known as black bars, are frequently used in construction. They possess a low carbon content and are easily weldable, making them ideal for reinforcing concrete structures. 2. High Strength Deformed (HSD) Steel Rebars have a higher tensile strength than mild steel rebars. They are created through cold twisting or stretching of mild steel bars, resulting in a deformed pattern on the surface that enhances bonding with concrete. 3. Corrosion-Resistant Steel Rebars are utilized in high-rise buildings located in coastal areas or regions with high humidity. They are coated with epoxy or galvanized to protect against moisture and corrosive elements, preventing rust and deterioration. 4. Carbon Steel Rebars, made of carbon steel, have a higher carbon content compared to mild steel rebars. They offer excellent tensile strength and are often employed in high-rise buildings that require additional reinforcement. 5. Stainless Steel Rebars are highly resistant to corrosion and can endure extreme weather conditions. They are commonly used in high-rise buildings that necessitate long-term durability and protection against rust. 6. TMT (Thermo-Mechanically Treated) Steel Rebars are manufactured by subjecting mild steel bars to a combination of heat treatment and mechanical deformation. This process imparts superior strength and ductility to the rebars, making them suitable for high-rise buildings where seismic resistance is crucial. Each type of steel rebar possesses distinct properties and advantages, enabling engineers and construction professionals to select the most suitable type based on the requirements and specifications of the high-rise building project.
Q: What are the limitations of using steel rebars?
There are several limitations associated with using steel rebars in construction projects. Firstly, steel rebars are susceptible to corrosion. When exposed to moisture and oxygen, they can start to rust over time. This corrosion weakens the rebars and compromises the structural integrity of the concrete. To mitigate this issue, rebars are usually coated with epoxy or other protective coatings, but these coatings can deteriorate over time and require maintenance. Secondly, steel rebars have a high thermal expansion coefficient. This means that they expand and contract significantly with changes in temperature. This can lead to stress and cracking in the concrete, particularly in regions with extreme temperature variations. To minimize these effects, engineers often use expansion joints or other techniques to accommodate the thermal expansion of the rebars. Additionally, steel rebars are heavy and can be challenging to handle and transport. Their weight can increase the overall weight of the structure, which may require additional support or reinforcement. Moreover, the transportation of steel rebars to construction sites can be costly and time-consuming. Furthermore, steel rebars are a finite resource and their production has an environmental impact. The extraction and production of steel require significant amounts of energy and can contribute to greenhouse gas emissions. Additionally, the depletion of natural resources required for steel production is a concern. Lastly, steel rebars are conductive to heat and electricity, which can pose safety risks in certain situations. For example, in areas prone to lightning strikes, the presence of steel rebars can increase the likelihood of electrical damage. In conclusion, while steel rebars are widely used in construction due to their strength and durability, they have limitations such as susceptibility to corrosion, thermal expansion issues, high weight, environmental impact, and electrical conductivity. It is crucial for engineers and architects to consider these limitations and employ appropriate measures to address them in construction projects.
Q: Can steel rebars be used in tunnels and underground structures?
Tunnels and underground structures can indeed utilize steel rebars. These rebars are frequently employed in construction projects for the purpose of reinforcing concrete structures and providing added strength and durability. When it comes to tunnels and underground structures, where stability and load-bearing capacity are of utmost importance, incorporating steel rebars into the concrete walls, floors, and ceilings is a common practice to enhance their structural integrity. The utilization of rebars helps in distributing the load and resisting potential cracks or deformations that may arise from the pressure exerted by the surrounding soil or water. Furthermore, steel rebars possess resistance against corrosion, making them suitable for underground environments that may contain moisture and other corrosive elements. All in all, steel rebars play a vital role in the construction of tunnels and underground structures by ensuring their safety and longevity.
Q: Are there any specific guidelines for storing steel rebars on-site?
Yes, there are specific guidelines for storing steel rebars on-site. Here are some key guidelines to consider: 1. Rebars should be stored on a flat, level surface to prevent distortion or bending. If the ground is not level, use wooden pallets or metal racks to create a stable storage area. 2. Ensure that the storage area is clean and free from any debris that could damage the rebars. Avoid storing rebars directly on the ground or in areas prone to water accumulation. 3. Proper stacking is important to prevent rebars from toppling over. Stack rebars in an orderly manner, making sure to align them vertically and horizontally. Use spacers or separators to maintain adequate spacing between the rebars and prevent them from touching each other. 4. If rebars are stored outdoors, cover them with a waterproof tarp or plastic sheeting to protect them from rain, snow, and moisture. This will help prevent rust and corrosion. 5. If rebars are stored indoors, ensure that the storage area has proper ventilation to prevent moisture buildup. This is particularly important to prevent rusting in humid environments. 6. Rebars should be stored away from any potential sources of damage, such as heavy machinery, construction equipment, or areas with high traffic. This will minimize the risk of accidental damage during construction activities. 7. Regularly inspect the rebars for any signs of damage, rust, or corrosion. If any rebars are found to be damaged, they should be removed from storage and replaced to ensure structural integrity in the construction project. Following these guidelines will help ensure that steel rebars are stored safely and maintain their structural integrity for use in construction projects.
Q: Are there any alternatives to steel rebars for reinforcement?
Yes, there are several alternatives to steel rebars for reinforcement. Some commonly used alternatives include fiberglass rebars, carbon fiber reinforced polymers (CFRP), glass fiber reinforced polymers (GFRP), and basalt rebars. These materials offer advantages such as high tensile strength, corrosion resistance, and lighter weight compared to steel rebars. However, the choice of reinforcement material depends on various factors such as project requirements, cost-effectiveness, and specific structural needs.
Q: What is the difference between steel rebars and steel mesh?
Concrete structures in construction projects commonly use steel rebars and steel mesh to reinforce them. However, there are notable distinctions regarding their design and application. Steel rebars, also called reinforcing bars, are lengthy cylindrical steel rods. They are typically employed to provide tensile strength to concrete structures. These rebars are usually arranged in a grid-like pattern within the concrete, preventing cracks and improving the overall structural integrity. Rebars come in various sizes and are used in applications where significant tensile force is anticipated, such as columns, beams, and slabs. On the other hand, steel mesh, also known as wire mesh or welded wire fabric, consists of interconnected steel wires that are welded together to create a grid-like pattern. This mesh is usually produced in large rolls and can be easily cut or bent into the desired shape. Steel mesh primarily offers both tensile and shear strength to concrete structures. It is commonly used in applications where a lower amount of tensile force is expected, like walls, foundations, and pavements. Regarding installation, steel rebars are usually placed and secured within the concrete formwork prior to pouring the concrete. They are positioned at specific locations according to the structural design requirements. Conversely, steel mesh is laid on top of the formwork or within the concrete pour itself, providing reinforcement throughout the entire concrete structure. Both steel rebars and steel mesh possess their own advantages and disadvantages. Rebars provide greater tensile strength and are excellent for applications involving heavy loads or high amounts of force. However, they can be more time-consuming and labor-intensive to install due to the individual placement and tying process. On the other hand, steel mesh offers easier and faster installation due to its continuous form, making it more commonly used in smaller-scale projects or applications with lighter loads. In conclusion, while both steel rebars and steel mesh serve the purpose of reinforcing concrete structures, they differ in terms of design, installation method, and application. The choice between rebars and mesh depends on specific structural requirements, project scale, and load expectations. It is advisable to consult with a structural engineer or construction professional to determine the most suitable reinforcement solution for a particular project.
Q: How are steel rebars connected or joined together?
Steel rebars are commonly connected or joined together using different techniques such as overlapping, welding, mechanical splicing, or using couplers. These methods ensure a strong and secure connection between the rebars, enhancing the structural integrity of reinforced concrete elements.
Q: What are the guidelines for the proper curing of concrete with steel rebars?
The guidelines for the proper curing of concrete with steel rebars are as follows: 1. Moisture: Concrete needs to be kept moist during the curing process to ensure proper hydration and strength development. However, when curing concrete with steel rebars, it is important to prevent excessive moisture as it can cause corrosion and damage the steel. Therefore, a balance should be maintained in providing enough moisture without allowing standing water to accumulate around the rebars. 2. Covering: The steel rebars should be adequately covered with concrete during the pouring process to provide protection against corrosion. The cover thickness should be in accordance with the design specifications to ensure sufficient strength and durability. 3. Curing time: The curing time for concrete with steel rebars is typically longer than that of plain concrete. This is because the steel needs to bond with the concrete and achieve proper adhesion. The recommended curing period can vary depending on factors such as ambient temperature, humidity, and the specific type of steel used. It is important to refer to the project specifications or consult with a structural engineer to determine the appropriate curing time for the specific application. 4. Temperature control: During the curing process, temperature control is crucial to ensure uniform hydration and avoid thermal stress. Rapid temperature changes can cause cracking and compromise the integrity of the concrete. It is important to protect the concrete from extreme temperature variations and provide insulation or shading as necessary. 5. Protection from external elements: Concrete with steel rebars needs to be protected from external elements that may cause damage or corrosion. This includes protecting the concrete from exposure to chloride ions, carbonation, and chemicals. Appropriate surface coatings or sealants can be applied to provide an additional layer of protection. 6. Inspection and maintenance: Regular inspection and maintenance are essential to ensure the long-term durability of concrete with steel rebars. It is important to monitor for any signs of corrosion, cracking, or deterioration and take appropriate measures to address them promptly. This may include repairing damaged areas, applying protective coatings, or implementing corrosion prevention measures. Following these guidelines will help ensure the proper curing of concrete with steel rebars, resulting in a structurally sound and durable construction material that can withstand the test of time.
Q: Can steel rebars be used in the construction of tunnels for transportation?
Yes, steel rebars can be used in the construction of tunnels for transportation. Steel rebars provide strength and reinforcement to the concrete used in tunnel construction, ensuring the structural integrity and durability of the tunnels. They help withstand the heavy loads and pressures that tunnels may experience, making them suitable for transportation tunnels where safety and longevity are crucial.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords