Hot Rolled Carbon Steel Rebar 16-25mm with High Quality
- Loading Port:
- China Main Port
- Payment Terms:
- TT or LC
- Min Order Qty:
- 25 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Product Description:
OKorder is offering Hot Rolled Carbon Steel Rebar 16-25mm with High Quality at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.
Product Applications:
Hot Rolled Carbon Steel Rebar 16-25mm with High Quality is widely used in buildings, bridges, roads and other engineering construction. Big to highways, railways, bridges, culverts, tunnels, public facilities such as flood control, dam, small to housing construction, beam, column, wall and the foundation of the plate, deformed bar is an integral structure material. With the development of world economy and the vigorous development of infrastructure construction, real estate, the demand for deformed bar will be larger and larger..
Product Advantages:
OKorder's Hot Rolled Carbon Steel Rebar 16-25mm with High Quality are durable, strong.packed and suitable for construction
Main Product Features:
· Premium quality
· Prompt delivery & seaworthy packing (30 days after receiving deposit)
· Can be recycled and reused
· Mill test certification
· Professional Service
· Competitive pricing
Product Specifications:
Manufacture: Hot rolled
Grade: HRB335 HRB400 BS4449 Grade460 ASTM Grade40 Grade60
Certificates: ISO, SGS, BV, CIQ
Length:6m 8m 9m 12m
Packaging: Export packing, packed by coil
FAQ:
Q1: Why buy Materials & Equipment from OKorder.com?
A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.
Q2: How do we guarantee the quality of our products?
A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.
Q3: How soon can we receive the product after purchase?
A3: Within three days of placing an order, we will begin production. The specific shipping date is dependent upon international and government factors, but is typically 7 to 10 workdays.
Q4: How many tons per bundle?
A4: Around 2-3tons
Q5: How to avoid the rust after deliver the goods to the loading port?
A5: We will keep the goods at the port covered with water-proof material
Q6: What is the chemical composition and physical properties of HRB400?
A6:
Grade | Technical data of the original chemical composition (%) | ||||||
C | Mn | Si | S | P | V | ||
HRB400 | ≤0.25 | ≤1.60 | ≤0.80 | ≤0.045 | ≤0.045 | 0.04-0.12 | |
Physical capability | |||||||
Yield Strength (N/cm²) | Tensile Strength (N/cm²) | Elongation (%) | |||||
≥400 | ≥570 | ≥14 | |||||
Q7:What is the weight per meter for the common sizes:
A7:
Diameter(mm) | Section area (mm²) | Mass(kg/m) | Weight of 12m bar(kg) |
10 | 78.54 | 0.617 | 7.404 |
12 | 113.1 | 0.888 | 10.656 |
14 | 153.9 | 1.21 | 14.52 |
16 | 201.1 | 1.58 | 18.96 |
18 | 254.5 | 2.00 | 24 |
20 | 314.2 | 2.47 | 29.64 |
22 | 380.1 | 2.98 | 35.76 |
25 | 490.9 | 3.85 | 46.2 |
28 | 615.8 | 4.83 | 57.96 |
32 | 804.2 | 6.31 | 75.72 |
36 | 1018 | 7.99 | 98.88 |
40 | 1257 | 9.87 | 118.44 |
50 | 1964 | 15.42 | 185.04 |
Images:
- Q:What are the different types of steel rebars used in tunnel construction?
- There are several types of steel rebars commonly used in tunnel construction, including carbon steel rebars, epoxy-coated rebars, stainless steel rebars, and galvanized rebars. Each type has its own unique properties and advantages, such as enhanced corrosion resistance, increased durability, and improved strength. The choice of rebar type depends on factors such as the specific tunnel design, environmental conditions, and project requirements.
- Q:How are steel rebars installed in construction projects?
- Steel rebars are installed in construction projects as a vital component of reinforced concrete structures. The process of installing steel rebars involves a series of steps. Firstly, the construction plans and specifications are reviewed to determine the required size, length, and placement of the rebars. This information is crucial to ensure the rebars provide the necessary strength and support to the structure. Next, the rebars are cut and shaped according to the specifications. This is typically done using specialized tools such as rebar cutters and benders. The rebars are usually supplied in long lengths and are cut to the required size on-site. Once the rebars are prepared, they are positioned and secured in the formwork or molds that will shape the concrete. This is done by placing the rebars at the desired locations and using wire or rebar ties to hold them in place. The ties are typically twisted around the rebars using pliers or a similar tool. This ensures that the rebars remain in their correct positions during the pouring and curing of the concrete. During the concrete pouring phase, the rebars are carefully positioned to ensure they are evenly distributed and adequately spaced. This is important for providing structural integrity and preventing the occurrence of weak spots in the concrete. After the concrete is poured, it is left to cure and harden. During this time, the rebars become embedded within the concrete, forming a strong bond. This bond creates a reinforced concrete structure that is capable of withstanding various loads and forces. In summary, the installation of steel rebars in construction projects involves cutting and shaping the rebars, positioning them correctly within the formwork, and securing them in place using ties. This process is crucial for creating reinforced concrete structures that are strong and durable.
- Q:How do steel rebars contribute to the energy efficiency of a building?
- Steel rebars contribute to the energy efficiency of a building in several ways. Firstly, steel rebars are used to reinforce concrete structures, such as beams, columns, and walls. This reinforcement helps to increase the structural integrity of the building, allowing it to withstand various loads and forces. This, in turn, reduces the need for excessive materials in the construction process, leading to a more energy-efficient building. Additionally, steel rebars have excellent thermal conductivity properties. This means that they can efficiently transfer and distribute heat throughout the building, helping to regulate the internal temperature. By evenly distributing heat, steel rebars help to minimize temperature fluctuations, reducing the need for excessive heating or cooling systems, thus saving energy. Moreover, steel rebars have a long lifespan and require minimal maintenance. This durability ensures that the building remains structurally sound over time, reducing the need for frequent repairs or replacements. As a result, the energy consumed in maintenance and renovation activities is significantly reduced. Furthermore, the use of steel rebars allows for the construction of larger, open spaces with fewer supporting columns. This design flexibility facilitates the integration of natural light and ventilation, reducing the reliance on artificial lighting and air conditioning systems. By maximizing natural resources, steel rebars contribute to the energy efficiency of the building. In conclusion, steel rebars play a vital role in enhancing the energy efficiency of a building. Their ability to reinforce structures, efficient thermal conductivity, durability, and design flexibility all contribute to reducing the energy consumption associated with construction, maintenance, and operation of the building.
- Q:How do steel rebars affect the overall crack resistance of concrete structures?
- Steel rebars play a crucial role in enhancing the crack resistance of concrete structures. When embedded within the concrete, rebars provide reinforcement and increase the tensile strength of the structure. Concrete is inherently strong in compression but weak in tension, and steel rebars help overcome this weakness by absorbing the tensile forces that may cause cracks in the concrete. The presence of rebars in concrete structures allows for the redistribution of stress, preventing cracks from propagating and spreading. As the concrete undergoes shrinkage or experiences external loads, the rebars act as a reinforcement grid and help to resist the formation and expansion of cracks. By absorbing and distributing the tensile stresses, rebars ensure that the concrete remains intact and can withstand higher loads without significant cracking. Moreover, steel rebars also contribute to the overall durability of concrete structures. When corrosion of the rebars occurs due to exposure to moisture or other environmental factors, it can lead to an increase in volume, causing internal pressure and potential cracking of the concrete. However, the use of corrosion-resistant rebars, such as epoxy-coated or stainless steel rebars, can significantly mitigate this risk and improve the crack resistance of the structure. In summary, steel rebars enhance the crack resistance of concrete structures by providing reinforcement, increasing tensile strength, redistributing stress, and preventing crack propagation. Their presence ensures that the structure can withstand various types of loads and environmental conditions, improving both the strength and durability of the concrete.
- Q:What are the different corrosion protection methods for steel rebars?
- There are several corrosion protection methods available for steel rebars, which are commonly used in reinforced concrete structures. These methods aim to prevent or minimize the corrosion of the steel rebars, as corrosion can significantly weaken the overall structure. 1. Concrete Cover: The most common corrosion protection method is providing an adequate thickness of concrete cover over the steel rebars. The concrete acts as a physical barrier, preventing exposure of the rebars to corrosive elements. 2. Galvanization: Galvanizing involves coating the steel rebars with a layer of zinc. This protective layer acts as a sacrificial anode, corroding before the steel rebars. Galvanization significantly enhances the rebars' resistance to corrosion. 3. Epoxy Coating: Epoxy coating is a popular corrosion protection method where a layer of epoxy resin is applied over the steel rebars. The epoxy acts as a barrier, preventing moisture and corrosive substances from reaching the rebars. 4. Cathodic Protection: Cathodic protection is an electrochemical method that involves the application of a sacrificial anode or an impressed current system. In a sacrificial anode system, a more reactive metal, such as zinc or magnesium, is connected to the steel rebars, sacrificing itself and preventing corrosion. In an impressed current system, an external power source is used to provide a protective current to the rebars, preventing corrosion. 5. Corrosion Inhibitors: Corrosion inhibitors are chemicals added to the concrete mix or applied as a surface treatment to the rebars. These inhibitors form a protective film on the rebars' surface, preventing corrosion by blocking the access of corrosive agents. 6. Stainless Steel Rebars: Using stainless steel rebars is an effective corrosion protection method. Stainless steel has a high resistance to corrosion, making it suitable for structures exposed to aggressive environments. It is important to note that the selection of the appropriate corrosion protection method depends on various factors, including the environmental conditions, expected service life of the structure, and cost considerations. Additionally, regular inspection and maintenance of the corrosion protection system are essential to ensure its effectiveness over time.
- Q:What are the guidelines for the proper cover thickness of steel rebars?
- The guidelines for the proper cover thickness of steel rebars are established to ensure the structural integrity and durability of reinforced concrete structures. The cover thickness refers to the distance between the outer surface of the rebar and the edge or surface of the concrete. The specific guidelines for cover thickness may vary depending on the design requirements, environmental conditions, and the intended use of the structure. However, there are generally accepted minimum cover thickness values provided by various international building codes and standards. The primary purpose of having an adequate cover thickness is to protect the steel rebar from corrosion caused by environmental factors such as moisture, carbonation, and chloride ingress. Corrosion can significantly weaken the rebars, compromising the structural integrity of the reinforced concrete. The recommended minimum cover thickness for steel rebars is typically determined based on the exposure conditions. For instance, in normal environmental conditions, a minimum cover thickness of 25mm to 40mm is often specified. In more aggressive environments, such as coastal areas with high chloride content or structures in contact with soil, a greater cover thickness of 50mm or more may be required. It is crucial to follow these guidelines to ensure the longevity and safety of the structure. Inadequate cover thickness can lead to accelerated corrosion of the rebars, resulting in reduced load-bearing capacity, cracking, and ultimately structural failure. Therefore, it is essential to consult the applicable building codes, standards, and design professionals to determine the appropriate cover thickness for steel rebars in a specific construction project.
- Q:Can steel rebars be used in the construction of educational institutions?
- Yes, steel rebars can be used in the construction of educational institutions. Steel rebars are commonly used in reinforced concrete structures to provide strength and reinforcement. They help to strengthen the concrete and improve its resistance to structural loads, making them suitable for use in various construction projects, including educational institutions.
- Q:How are steel rebars classified based on their surface patterns?
- There are two main categories for classifying steel rebars, which are based on their surface patterns. These categories include plain rebars and deformed rebars. Plain rebars have a smooth and plain surface without any surface patterns or deformations. They are mainly used in situations where the concrete needs to slide along the rebar, such as in bridges and highway pavements. The smooth surface of plain rebars ensures a strong bond between the steel and concrete, allowing for good load transfer between the two materials. On the other hand, deformed rebars have surface patterns or deformations that improve their bond with concrete. These patterns can take the form of ribs, indentations, or other irregularities. Deformed rebars provide better mechanical anchoring to the concrete, preventing slippage and enhancing the overall structural integrity of reinforced concrete structures. Furthermore, deformed rebars are further classified based on the type and shape of their surface patterns. Some common types include ribbed rebars, indented rebars, and twisted rebars. Ribbed rebars have continuous, evenly spaced ribs along their entire length, ensuring strong bonding strength with the concrete even under heavy loads. Indented rebars have indentations or impressions along their length, increasing the surface area and enhancing the bond between the steel and concrete. Twisted rebars have a twisted pattern along their length, providing additional mechanical interlocking between the rebar and concrete. The choice of rebar surface pattern depends on the specific requirements of the construction project. Factors such as the type of structure, load-bearing capacity, and local building regulations play a crucial role in determining the appropriate classification of steel rebars based on their surface patterns.
- Q:Can steel rebars be used in earthquake-resistant structures?
- Yes, steel rebars can be used in earthquake-resistant structures. Steel rebars provide reinforcement to concrete structures, making them stronger and better able to withstand seismic forces during an earthquake. The use of steel rebars helps to enhance the structural integrity and overall safety of buildings in earthquake-prone areas.
- Q:How do steel rebars contribute to the seismic performance of concrete buildings?
- Steel rebars play a crucial role in enhancing the seismic performance of concrete buildings. They provide reinforcement to concrete structures, making them more resistant to seismic forces. During an earthquake, the ground shakes violently, exerting horizontal and vertical forces on the building. These forces can cause the concrete to crack or even collapse if not properly reinforced. Steel rebars are used to strengthen the concrete and mitigate the effects of seismic activity. The rebars are strategically placed within the concrete, forming a mesh-like network that increases the tensile strength of the structure. Concrete is strong in compression but weak in tension, whereas steel has excellent tensile strength. By combining the two materials, the rebars help to distribute the seismic forces more evenly throughout the concrete, preventing cracks from propagating and providing a more ductile behavior. In addition to improving the tensile strength, steel rebars also enhance the overall stiffness of the structure. This stiffness helps to reduce the building's response to vibrations during an earthquake, minimizing the potential for damage. The rebars act as a backbone for the concrete, increasing its resistance to deformation and improving the building's overall structural integrity. Moreover, steel rebars also contribute to the ductility of the structure. Ductility refers to the ability of a material to deform under stress without losing its structural integrity. During an earthquake, the building undergoes significant displacement and deformation. Steel rebars allow the concrete to flex and absorb the energy from seismic forces without catastrophic failure. This ductile behavior ensures that the building can withstand the shaking and provides occupants with more time to evacuate safely. Overall, steel rebars are crucial in enhancing the seismic performance of concrete buildings. They improve the tensile strength, stiffness, and ductility of the structure, reducing the risk of damage or collapse during an earthquake. By reinforcing the concrete, steel rebars play a vital role in ensuring the safety and resilience of concrete buildings in seismic-prone areas.
1. Manufacturer Overview |
|
---|---|
Location | |
Year Established | |
Annual Output Value | |
Main Markets | |
Company Certifications |
2. Manufacturer Certificates |
|
---|---|
a) Certification Name | |
Range | |
Reference | |
Validity Period |
3. Manufacturer Capability |
|
---|---|
a)Trade Capacity | |
Nearest Port | |
Export Percentage | |
No.of Employees in Trade Department | |
Language Spoken: | |
b)Factory Information | |
Factory Size: | |
No. of Production Lines | |
Contract Manufacturing | |
Product Price Range |
Send your message to us
Hot Rolled Carbon Steel Rebar 16-25mm with High Quality
- Loading Port:
- China Main Port
- Payment Terms:
- TT or LC
- Min Order Qty:
- 25 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords