HRB400 Deformed Steel Bar with Leigth 6M,12M,9M
- Loading Port:
- China Main Port
- Payment Terms:
- TT or LC
- Min Order Qty:
- -
- Supply Capability:
- -
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Product Description:
OKorder is offering high quality HRB400 Deformed Steel Bar with Leigth 6M,12M,9Mat great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.
Product Applications:
HRB400 Deformed Steel Bar with Leigth 6M,12M,9M are ideal for structural applications and are widely used in the construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries.
Product Advantages:
OKorder's HRB400 Deformed Steel Bar with Leigth 6M,12M,9M are durable, strong, and resist corrosion.
Main Product Features:
· Premium quality
· Prompt delivery & seaworthy packing (30 days after receiving deposit)
· Corrosion resistance
· Can be recycled and reused
· Mill test certification
· Professional Service
· Competitive pricing
Specifications of HRB400 Deformed Steel Bar with Leigth 6M,12M,9M:
Standard | GB | HRB400 | |
Diameter | 6mm,8mm,10mm,12mm,14mm,16mm,18mm,20mm, 22mm,25mm,28mm,32mm,36mm,40mm,50mm | ||
Length | 6M, 9M,12M or as required | ||
Place of origin | Hebei, China mainland | ||
Advantages | exact size, regular package, chemical and mechanical properties are stable. | ||
Type | Hot rolled deformed steel bar | ||
Brand name | DRAGON |
Chemical Composition: (Please kindly find our chemistry of our material based on HRB500 as below for your information)
Grade | Technical data of the original chemical composition (%) | ||||||
C | Mn | Si | S | P | V | ||
HRB400 | ≤0.25 | ≤1.60 | ≤0.80 | ≤0.045 | ≤0.045 | 0.04-0.12 | |
Physical capability | |||||||
Yield Strength (N/cm²) | Tensile Strength (N/cm²) | Elongation (%) | |||||
≥400 | ≥570 | ≥14 |
Theoretical weight and section area of each diameter as below for your information:
Diameter(mm) | Section area (mm²) | Mass(kg/m) | Weight of 12m bar(kg) |
6 | 28.27 | 0.222 | 2.664 |
8 | 50.27 | 0.395 | 4.74 |
10 | 78.54 | 0.617 | 7.404 |
12 | 113.1 | 0.888 | 10.656 |
14 | 153.9 | 1.21 | 14.52 |
16 | 201.1 | 1.58 | 18.96 |
18 | 254.5 | 2.00 | 24 |
20 | 314.2 | 2.47 | 29.64 |
22 | 380.1 | 2.98 | 35.76 |
25 | 490.9 | 3.85 | 46.2 |
28 | 615.8 | 4.83 | 57.96 |
32 | 804.2 | 6.31 | 75.72 |
36 | 1018 | 7.99 | 98.88 |
40 | 1257 | 9.87 | 118.44 |
50 | 1964 | 15.42 | 185.04 |
Usage and Applications of HRB400 Deformed Steel Bar with Leigth 6M,12M,9M:
Deformed bar is widely used in buildings, bridges, roads and other engineering construction. Big to highways, railways, bridges, culverts, tunnels, public facilities such as flood control, dam, small to housing construction, beam, column, wall and the foundation of the plate, deformed bar is an integral structure material. With the development of world economy and the vigorous development of infrastructure construction, real estate, the demand for deformed bar will be larger and larger..
Packaging & Delivery of HRB400 Deformed Steel Bar with Leigth 6M,12M,9M:
Packaging Detail: products are packed in bundle and then shipped by container or bulk vessel, deformed bar is usually naked strapping delivery, when storing, please pay attention to moisture proof. The performance of rust will produce adverse effect.
Each bundle weight: 2-3MT, or as required
Payment term: TT or L/C
Delivery Detail: within 45 days after received advanced payment or LC.
Label: to be specified by customer, generally, each bundle has 1-2 labels
Trade terms: FOB, CFR, CIF
Note:
1. Our products are produced according to national standard (GB), if not, supply according to national standards (GB) or agreement as customer required.
2. Other Grade and Standard Deformed Steel Bar we can supply:
Grade: GR40/GR60, G460B/B500A/B500B/B500C,BST500S
Standard: ASTM, BS, DIN
The Minimum Order Quantity of these products is high, and need to be confirmed.
3. We can not only supply Deformed Steel Bar; if you need anything about building materials, please contact us for further information.
4. Please send us your detail specifications when inquire. We will reply to you as soon as possible. We sincerely hope we can establish a long stable business relationship.
FAQ:
Q1: Why buy Materials & Equipment from OKorder.com?
A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.
Q2: How do we guarantee the quality of our products?
A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.
Q3: How soon can we receive the product after purchase?
A3: Within three days of placing an order, we will begin production. The specific shipping date is dependent upon international and government factors, but is typically 7 to 10 workdays.
Q4: What makes stainless steel stainless?
A4: Stainless steel must contain at least 10.5 % chromium. It is this element that reacts with the oxygen in the air to form a complex chrome-oxide surface layer that is invisible but strong enough to prevent further oxygen from "staining" (rusting) the surface. Higher levels of chromium and the addition of other alloying elements such as nickel and molybdenum enhance this surface layer and improve the corrosion resistance of the stainless material.
- Q:How are steel rebars spliced or connected in construction joints?
- Various methods are used to splice or connect steel rebars in construction joints, ensuring the integrity and strength of reinforced concrete. A common method is lap splicing, where rebars are overlapped and then mechanically connected or tied together with steel wires or couplers. The required overlap length for lap splicing depends on the rebar diameter and design specifications, often specified as a multiple of the diameter. This length guarantees efficient load transfer and prevents potential failures at the connection point. Mechanical couplers offer an alternative method for splicing rebars. These pre-fabricated devices securely connect two rebars, eliminating the need for lap splicing and providing a more precise and reliable connection. Mechanical couplers are particularly useful when dealing with larger rebar sizes or when long lap lengths are not feasible. In certain cases, welded splicing may be used. This method involves welding the ends of rebars together, creating a solid and continuous connection. Welded splicing is commonly employed when dealing with larger diameter rebars and higher load requirements. However, it is crucial to adhere to proper welding techniques and practices to maintain the connection's integrity. Overall, the splicing or connection of steel rebars in construction joints is a crucial aspect of reinforced concrete construction. It ensures that rebars function as continuous reinforcement, enabling structures to effectively resist applied loads. The choice of splicing method depends on factors such as rebar size, design specifications, and project requirements.
- Q:What is the cost of steel rebars?
- The cost of steel rebars can vary depending on various factors such as the grade of steel, market conditions, and location. On average, the cost of steel rebars ranges from $500 to $800 per metric ton. However, it is important to note that prices can fluctuate due to factors like supply and demand, raw material costs, and any additional taxes or tariffs imposed on steel imports. It is recommended to contact local suppliers or check market reports for the most up-to-date and accurate pricing information.
- Q:What is the effect of high temperatures on steel rebars?
- High temperatures have a significant effect on steel rebars. At high temperatures, steel rebars undergo a process called thermal expansion, which causes them to expand in size. This expansion can result in the concrete surrounding the rebars cracking or spalling, as the increased size of the rebars pushes against the concrete. Additionally, high temperatures can lead to a reduction in the strength and load-bearing capacity of steel rebars. This is due to a phenomenon called tempering, where the heat causes the steel to lose its structural integrity and become weaker. As a result, steel rebars exposed to high temperatures may experience reduced strength and become more susceptible to deformation or failure. Therefore, it is crucial to consider the effect of high temperatures on steel rebars when designing structures or assessing their integrity, especially in environments prone to heat or fire hazards.
- Q:How do steel rebars contribute to the overall safety of a structure?
- The overall safety of a structure is significantly enhanced by steel rebars in multiple ways. Firstly, concrete, which is brittle and prone to cracking under tension, is reinforced by steel rebars. By embedding steel rebars within the concrete, the structure gains increased tensile strength, enabling it to withstand greater loads and resist cracking or failure. Secondly, stress is distributed and dissipated throughout the structure with the help of steel rebars. When a load is applied to a structure, such as an earthquake or strong winds, internal forces are generated that need to be managed and dispersed. Steel rebars serve as an interconnected network of bars, transferring the load from one rebar to another, and ultimately to the foundation. This prevents localized stress concentrations and ensures that the structure can better withstand external forces. Moreover, the ductility of a structure is improved by steel rebars. Ductility refers to the ability of a material to deform without breaking. When a structure is subjected to extreme forces, such as seismic activity or high winds, it must be able to flex and absorb energy without collapsing. Steel rebars provide this ductility by elongating and deforming under stress, absorbing and dissipating energy before reaching a critical point of failure. This characteristic is crucial in protecting the overall integrity of the structure and ensuring the safety of its occupants. Furthermore, steel rebars also contribute to the long-term durability of a structure. Concrete is vulnerable to various environmental factors, including moisture, temperature fluctuations, and chemical exposure, which can cause deterioration and weakening over time. By reinforcing the concrete with steel rebars, the structure becomes more resistant to these factors, maintaining its strength and stability for an extended period. In conclusion, steel rebars are essential for ensuring the overall safety of a structure. They enhance the tensile strength of concrete, distribute stress, improve ductility, and increase the durability of the structure. By providing these crucial properties, steel rebars significantly reduce the risk of structural failure and safeguard the lives and well-being of individuals within the building.
- Q:What are the guidelines for protecting steel rebars during concrete placement and compaction?
- To ensure the structural integrity and durability of the concrete structure, it is essential to adhere to guidelines for safeguarding steel rebars during concrete placement and compaction. Here are some key guidelines to consider: 1. Covering and Support: Adequate coverage and support are necessary to shield rebars from corrosion and damage. The minimum cover requirements specified in the design or relevant standards must be met. Additionally, rebars should be positioned accurately, avoiding direct contact with the ground or formwork. 2. Cleanliness: Prior to concrete placement, thorough cleaning of rebars is crucial to eliminate rust, scale, dirt, or other contaminants. This can be achieved through wire brushing, sandblasting, or other appropriate methods. Clean rebars promote better bonding with the concrete and reduce the risk of corrosion. 3. Moisture Control: During concrete placement and compaction, rebars should remain dry. Excessive moisture, particularly in high humidity or chloride-exposed areas, can accelerate corrosion. To prevent moisture accumulation, proper drainage systems and the use of waterproofing membranes are recommended. 4. Spacing and Tying: Adequate spacing and tying of rebars are necessary to maintain the desired concrete cover and prevent displacement during placement and compaction. This ensures proper embedding of rebars in the concrete, providing the required structural strength. 5. Vibrating and Compaction: Care should be taken to avoid direct contact between the vibrator and rebars during concrete placement, as this can cause damage or displacement. Vibrating should be done carefully and gradually to ensure uniform and tight compaction of the concrete around the rebars. 6. Concrete Placement Techniques: Proper techniques for concrete placement should be followed to minimize the risk of rebar displacement. Gentle and even placement of concrete should be prioritized, avoiding excessive dropping or splashing that could displace rebars. Additionally, proper compaction and consolidation techniques should be employed to eliminate voids and fully encapsulate rebars. 7. Protection from External Factors: Rebars should be protected from environmental factors that can induce corrosion, such as moisture, chemicals, or aggressive soils. Adequate curing of the concrete is vital to prevent rapid drying or carbonation, which can lead to corrosion and reduced durability. By adhering to these guidelines, rebars can be effectively protected during concrete placement and compaction, ensuring the long-lasting and safe nature of the concrete structure. It is advisable to consult relevant design codes, specifications, and industry best practices for project-specific guidelines.
- Q:Can steel rebars be used in structures with long spans?
- Yes, steel rebars can be used in structures with long spans. Steel rebars are commonly used as reinforcement in concrete structures to provide added strength and stability. They can effectively distribute tensile forces and help prevent cracks or failure in the concrete. In structures with long spans, such as bridges, high-rise buildings, or large industrial structures, steel rebars are often used to reinforce the concrete beams, slabs, and columns. This helps to ensure the structural integrity and stability of the building or structure, even under heavy loads or over long distances. Steel rebars have high tensile strength and are resistant to corrosion, making them suitable for use in long-span structures where durability and reliability are important factors.
- Q:How do steel rebars affect the overall strength of a structure?
- Steel rebars significantly enhance the overall strength of a structure by providing reinforcement and increasing its tensile strength. They act as a skeleton within the concrete, distributing the load more evenly and preventing cracks or failures.
- Q:How are steel rebars different from other types of reinforcement?
- Steel rebars are different from other types of reinforcement primarily because they are made of steel, which gives them high tensile strength and durability. Unlike other materials like wood or concrete, steel rebars can withstand heavy loads and provide structural integrity to reinforced concrete structures. Additionally, steel rebars can be easily molded and shaped into various designs, making them versatile and suitable for different construction applications.
- Q:How do steel rebars contribute to the overall aesthetics of a building?
- Steel rebars do not directly contribute to the overall aesthetics of a building as they are typically hidden within the concrete structure. However, their presence is crucial for providing structural integrity and strength, ensuring the building's safety and durability.
- Q:Can steel rebars be used in structures with high resistance to UV radiation?
- Steel rebars are not typically recommended for use in structures with high exposure to UV radiation. Rebars made of traditional carbon steel are susceptible to corrosion when exposed to UV radiation, as the sun's rays can break down the protective oxide layer on the surface of the steel, leading to rust and deterioration over time. Additionally, UV radiation can cause the steel to expand and contract, which can weaken its overall strength and structural integrity. To counteract these issues, alternative materials such as stainless steel rebars or epoxy-coated rebars are often used in structures where high resistance to UV radiation is required. Stainless steel rebars have a higher resistance to corrosion and are more durable when exposed to UV radiation. Epoxy-coated rebars have a protective layer of epoxy coating that shields the steel from direct exposure to UV radiation, reducing the risk of corrosion. It is important to consult with structural engineers and professionals to determine the appropriate type of rebars to be used in structures with high resistance to UV radiation. Factors such as the specific environment, climate conditions, and project requirements should be taken into consideration to ensure the longevity and safety of the structure.
1. Manufacturer Overview |
|
---|---|
Location | |
Year Established | |
Annual Output Value | |
Main Markets | |
Company Certifications |
2. Manufacturer Certificates |
|
---|---|
a) Certification Name | |
Range | |
Reference | |
Validity Period |
3. Manufacturer Capability |
|
---|---|
a)Trade Capacity | |
Nearest Port | |
Export Percentage | |
No.of Employees in Trade Department | |
Language Spoken: | |
b)Factory Information | |
Factory Size: | |
No. of Production Lines | |
Contract Manufacturing | |
Product Price Range |
Send your message to us
HRB400 Deformed Steel Bar with Leigth 6M,12M,9M
- Loading Port:
- China Main Port
- Payment Terms:
- TT or LC
- Min Order Qty:
- -
- Supply Capability:
- -
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords