HRB500 Deformed Steel Bar
- Loading Port:
- China Main Port
- Payment Terms:
- TT or LC
- Min Order Qty:
- 25MT m.t.
- Supply Capability:
- 800000/YEAR m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Specifications of HRB500 Deformed Steel Bar:
Standard | GB | HRB500 |
Diameter | 6mm,8mm,10mm,12mm,14mm,16mm,18mm,20mm, 22mm,25mm,28mm,32mm,36mm,40mm,50mm | |
Length | 6M, 9M,12M or as required | |
Payment term | TT or L/C | |
Application | mainly used in construction industry to reinforce concrete structures and so on | |
Quality | First quality, the goods are from Chinese big manufacturers. | |
Type | Hot rolled deformed steel bar | |
Brand name | DRAGON |
Chemical Composition: (Please kindly find our chemistry of our material based on HRB500 as below for your information)
Grade | Technical data of the original chemical composition (%) | ||||||
C | Mn | Si | S | P | V | ||
HRB500 | ≤0.25 | ≤1.60 | ≤0.80 | ≤0.045 | ≤0.045 | 0.08-0.12 | |
Physical capability | |||||||
Yield Strength (N/cm²) | Tensile Strength (N/cm²) | Elongation (%) | |||||
≥500 | ≥630 | ≥12 |
Theoretical weight and section area of each diameter as below for your information:
Diameter(mm) | Section area (mm²) | Mass(kg/m) | Weight of 12m bar(kg) |
6 | 28.27 | 0.222 | 2.664 |
8 | 50.27 | 0.395 | 4.74 |
10 | 78.54 | 0.617 | 7.404 |
12 | 113.1 | 0.888 | 10.656 |
14 | 153.9 | 1.21 | 14.52 |
16 | 201.1 | 1.58 | 18.96 |
18 | 254.5 | 2.00 | 24 |
20 | 314.2 | 2.47 | 29.64 |
22 | 380.1 | 2.98 | 35.76 |
25 | 490.9 | 3.85 | 46.2 |
28 | 615.8 | 4.83 | 57.96 |
32 | 804.2 | 6.31 | 75.72 |
36 | 1018 | 7.99 | 98.88 |
40 | 1257 | 9.87 | 118.44 |
50 | 1964 | 15.42 | 185.04 |
Usage and Applications of HRB500 Deformed Steel Bar:
Deformed bar is widely used in buildings, bridges, roads and other engineering construction. Big to highways, railways, bridges, culverts, tunnels, public facilities such as flood control, dam, small to housing construction, beam, column, wall and the foundation of the plate, deformed bar is an integral structure material. With the development of world economy and the vigorous development of infrastructure construction, real estate, the demand for deformed bar will be larger and larger..
Packaging & Delivery of HRB500 Deformed Steel Bar:
Packaging Detail: products are packed in bundle and then shipped by container or bulk vessel, deformed bar is usually naked strapping delivery, when storing, please pay attention to moisture proof. The performance of rust will produce adverse effect.
Each bundle weight: 2-3MT, or as required
Delivery Detail: within 45 days after received advanced payment or LC.
Label: to be specified by customer, generally, each bundle has 1-2 labels
Trade terms: FOB, CFR, CIF
Deformed Steel Bar in stock
Deformed Steel Bar in testing
Note:
1. Our products are produced according to national standard (GB), if not, supply according to national standards (GB) or agreement as customer required.
2. Other Grade and Standard Deformed Steel Bar we can supply:
Grade: GR40/GR60, G460B/B500A/B500B/B500C,BST500S
Standard: ASTM, BS, DIN
The Minimum Order Quantity of these products is high, and need to be confirmed.
3. We can not only supply Deformed Steel Bar; if you need anything about building materials, please contact us for further information.
4. Please send us your detail specifications when inquire. We will reply to you as soon as possible. We sincerely hope we can establish a long stable business relationship.
- Q: Can steel rebars be used in road or highway construction?
- Road or highway construction can utilize steel rebars. Reinforcing bars, also known as steel rebars, are commonly employed in the construction sector to bolster the strength and support of concrete structures. In the realm of road and highway construction, rebars are typically utilized in the creation of reinforced concrete pavements, bridge decks, and retaining walls. By embedding rebars in concrete, its tensile strength can be enhanced, as concrete is robust in compression but weak in tension. The addition of rebars to the concrete aids in distributing tensile forces, thus enhancing the overall longevity and load-bearing capacity of road or highway infrastructure. The utilization of steel rebars in road or highway construction presents numerous advantages. Firstly, it enhances the structural integrity and lifespan of the infrastructure, as reinforced concrete structures are better equipped to withstand heavy traffic loads, temperature fluctuations, and environmental factors. Secondly, rebars assist in mitigating cracking and deterioration of the concrete, thereby reducing the necessity for frequent repairs and maintenance. Additionally, the utilization of rebars allows for more efficient and cost-effective construction, as it permits the use of thinner concrete sections without compromising strength. All in all, steel rebars are an indispensable component in road or highway construction, as they provide the essential reinforcement to ensure the strength, durability, and longevity of the infrastructure.
- Q: How do steel rebars affect the thermal properties of concrete?
- Steel rebars can significantly affect the thermal properties of concrete by increasing its thermal conductivity. Due to their high thermal conductivity compared to concrete, steel rebars act as heat bridges, allowing heat to transfer more easily through the structure. This can result in increased heat loss or gain, affecting the overall thermal performance of the concrete.
- Q: What is the role of steel rebars in preventing concrete spalling due to fire?
- The role of steel rebars in preventing concrete spalling due to fire is crucial. Spalling is the process where concrete cracks, breaks, or flakes off under extreme heat, such as in a fire. Steel rebars, also known as reinforcement bars, are embedded within the concrete structure to enhance its strength and durability. During a fire, the temperature can rise rapidly, causing the moisture within the concrete to turn into steam. This steam generates pressure within the concrete, leading to spalling. However, the presence of steel rebars helps to mitigate this issue. Steel has a higher melting point than concrete and possesses excellent thermal conductivity. When exposed to high temperatures, the steel rebars conduct and dissipate the heat more efficiently compared to the surrounding concrete. This heat transfer helps to minimize the temperature gradient within the concrete, reducing the risk of spalling. Furthermore, steel rebars act as a reinforcement to hold the concrete together. In the event of spalling, the rebars help to maintain the structural integrity of the concrete by preventing it from completely disintegrating. They provide additional strength and support to the concrete, making it more resistant to cracking and breaking. In summary, steel rebars play a vital role in preventing concrete spalling due to fire. They dissipate heat, minimize temperature gradients, and provide structural support to the concrete. By enhancing the fire resistance of the concrete, steel rebars contribute to the overall safety and longevity of the structure.
- Q: What is the effect of steel rebars on the durability of concrete structures?
- Steel rebars have a significant positive effect on the durability of concrete structures. By reinforcing the concrete, rebars enhance its tensile strength and resistance to cracking and deformation. This added strength helps to prevent structural failures and increases the longevity of the concrete, making it more resistant to environmental factors such as corrosion, earthquakes, and heavy loads. Overall, steel rebars play a crucial role in ensuring the durability and long-term stability of concrete structures.
- Q: Can steel rebars be used in the construction of tunnels?
- Yes, steel rebars can be used in the construction of tunnels. Steel rebars are commonly used as reinforcement in concrete structures, including tunnels. They provide strength and stability to the concrete, making it capable of withstanding the loads and stresses experienced in tunnel construction.
- Q: What is the impact of steel rebars on the constructability of a project?
- The constructability of a project is greatly affected by steel rebars, which play a vital role in reinforcing and providing structural integrity to concrete structures. By incorporating steel rebars, the overall strength, durability, and resilience of a construction project are significantly improved. One important impact of using steel rebars is the increased load-bearing capacity of the structure. Rebars are designed to withstand tension, complementing the concrete's ability to resist compression. This combination enhances the structural strength of the project, enabling it to withstand heavy loads and external forces, such as earthquakes or high winds. Moreover, steel rebars also enhance the ductility of the concrete structure. Ductility refers to the material's ability to deform without breaking. By adding rebars, the concrete becomes more flexible, allowing it to absorb energy and deform under stress before reaching its breaking point. This is particularly important in areas prone to seismic activities, as it helps prevent sudden and catastrophic failure of the structure. Another aspect of constructability affected by steel rebars is the overall lifespan of the project. The corrosion resistance properties of rebars, especially when coated or galvanized, significantly extend the lifespan of the structure. This is particularly relevant in environments with high humidity, coastal areas, or regions with harsh weather conditions. By preventing corrosion and maintaining the integrity of the rebars, the entire project's longevity and durability are greatly enhanced. Additionally, steel rebars also facilitate the construction process itself. Their availability in various lengths, shapes, and sizes allows for flexible and efficient design and construction. Contractors can easily cut, bend, and shape rebars to fit specific project requirements, reducing construction time and costs. Moreover, rebars can be prefabricated off-site, minimizing on-site labor and simplifying the construction process. In conclusion, the impact of steel rebars on the constructability of a project is highly significant. They improve the overall strength, load-bearing capacity, ductility, and lifespan of the structure. Additionally, the flexibility and ease of use of steel rebars contribute to efficient construction practices. Therefore, incorporating steel rebars into a project is essential for ensuring its structural integrity and long-term success.
- Q: How are steel rebars bent during construction?
- Steel rebars are typically bent during construction using specialized equipment such as hydraulic benders or rebar bending machines. These machines apply force to the rebar, causing it to bend into the desired shape. The process may involve heating the rebar to make it more malleable before bending. Skilled workers follow specific bending instructions and use measurements to ensure the rebars are bent accurately according to the construction plans.
- Q: What does it mean to have 22 4GJ on the threaded steel?
- 4GJ22 these are the basic information of reinforcement, equivalent to the identity card information. The steel plant on behalf of grade four steel (HRB500) GJ is Hangzhou iron and then the nominal diameter is 22.
- Q: What are the guidelines for protecting steel rebars during concrete pouring?
- Protecting steel rebars during concrete pouring is crucial to ensure the structural integrity and longevity of reinforced concrete structures. The following guidelines should be followed: 1. Clean the rebars: Before pouring concrete, it is essential to clean the rebars thoroughly to remove any dirt, rust, or other contaminants. This can be done using wire brushes or power tools to achieve a clean and smooth surface. 2. Rust prevention: Apply an appropriate rust inhibitor or anti-corrosion coating to the rebars after cleaning. This will help protect the steel from corrosion caused by moisture or chemicals present in the concrete. 3. Proper placement: Ensure that the rebars are placed at the correct depth and spacing as specified in the structural drawings or design codes. This will provide the necessary reinforcement and structural strength to the concrete. 4. Support and alignment: Use proper supports, such as chairs or spacer blocks, to maintain the correct alignment and position of the rebars during the concrete pour. This will prevent any displacement or movement of the rebars. 5. Tie the rebars securely: Use steel wire or rebar ties to secure the rebars together at intersections and overlap areas. This will ensure that the rebars remain in place and maintain the desired structural configuration. 6. Avoid contact with the ground: Prevent the rebars from coming into direct contact with the ground during the pouring process. This can be achieved by using plastic or concrete chairs to elevate the rebars above the ground surface. 7. Use plastic caps: Cover the exposed ends of the rebars with plastic caps to protect them from moisture, dirt, or other contaminants while the concrete cures. 8. Adequate concrete cover: Ensure that the rebars are adequately covered by the concrete. The concrete cover is the distance between the outer surface of the rebars and the nearest outer surface of the concrete. This cover protects the rebars from external elements and prevents corrosion. 9. Monitor concrete placement: During concrete pouring, take precautions to avoid displacing or damaging the rebars. This can be achieved by using proper pouring techniques, such as using a tremie pipe or a concrete pump, to minimize the impact on the rebars. 10. Curing and protection: After the concrete is poured, it is crucial to properly cure and protect it. This includes covering the concrete with wet burlap or plastic sheeting to maintain moisture levels and prevent premature drying, cracking, or shrinkage. Adequate curing will also help in protecting the rebars from corrosion. By following these guidelines, the rebars can be effectively protected during concrete pouring, ensuring the durability and strength of the reinforced concrete structure.
- Q: What are the advantages of using corrosion-resistant steel rebars?
- There are several advantages of using corrosion-resistant steel rebars in construction projects. Firstly, corrosion-resistant steel rebars offer enhanced durability and longevity. Regular steel rebars are prone to corrosion when exposed to moisture and chemicals, which can significantly reduce their lifespan. However, corrosion-resistant steel rebars are specifically designed to resist corrosion, ensuring a longer service life for the structure. This is particularly beneficial in environments with high humidity, coastal areas, or regions with high levels of pollution. Secondly, the use of corrosion-resistant steel rebars helps in maintaining the structural integrity of the building. Corrosion can weaken the rebars, leading to structural failures and safety hazards. By using corrosion-resistant steel rebars, the risk of corrosion-induced structural damage is minimized, ensuring the safety of the occupants and the overall stability of the structure. Additionally, the maintenance costs associated with corrosion-resistant steel rebars are significantly lower compared to regular steel rebars. Structures built with regular steel rebars require frequent inspections, repairs, and maintenance to prevent and address corrosion issues. However, corrosion-resistant steel rebars reduce the need for such maintenance, resulting in reduced costs over the lifespan of the structure. Furthermore, corrosion-resistant steel rebars offer increased flexibility in design and construction. The properties of these rebars allow for the construction of thinner and lighter structures without compromising on strength. This can lead to cost savings in terms of materials and construction time, making corrosion-resistant steel rebars a cost-effective solution. Lastly, the use of corrosion-resistant steel rebars contributes to sustainable construction practices. By increasing the lifespan of the structure and reducing the need for maintenance, the environmental impact of the construction project is minimized. Additionally, the use of these rebars can contribute to obtaining green building certifications, promoting sustainable and environmentally-friendly construction practices. In conclusion, the advantages of using corrosion-resistant steel rebars include enhanced durability, improved structural integrity, reduced maintenance costs, increased design flexibility, and promoting sustainable construction practices.
1. Manufacturer Overview
Location | Hebei, China |
Year Established | 2002 |
Annual Output Value | Above US$ 400 Million |
Main Markets | South Asia; Middle East;Southeast Aisa |
Company Certifications |
2. Manufacturer Certificates
a) Certification Name | |
Range | |
Reference | |
Validity Period |
3. Manufacturer Capability
a) Trade Capacity | |
Nearest Port | Tianjin |
Export Percentage | 60%-80% |
No.of Employees in Trade Department | 11-20 People |
Language Spoken: | English; Chinese |
b) Factory Information | |
Factory Size: | Above 100,000 square meters |
No. of Production Lines | 2 |
Contract Manufacturing | OEM service offered |
Product Price Range | average |
Send your message to us
HRB500 Deformed Steel Bar
- Loading Port:
- China Main Port
- Payment Terms:
- TT or LC
- Min Order Qty:
- 25MT m.t.
- Supply Capability:
- 800000/YEAR m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords