• Steel Deformed Rebar In Coil Small Sizes for Construction System 1
  • Steel Deformed Rebar In Coil Small Sizes for Construction System 2
Steel Deformed Rebar In Coil Small Sizes for Construction

Steel Deformed Rebar In Coil Small Sizes for Construction

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT or LC
Min Order Qty:
25 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

1. Structure of Steel Deformed Rebar In Coil Small Sizes for Construction Description:

Steel deformed rebar in coil small sizes for construction is a beam with an I-shaped cross-section. The horizontal elements of the "I" are known as flanges, while the vertical element is termed the "web". Steel deformed rebar in coil small sizes for construction is usually made of structural steel and is used in construction and civil engineering. The steel deformed rebar in coil small sizes for construction resists shear forces, while the flanges resist most of the bending moment experienced by the beam. Steel deformed rebar in coil small sizes for construction theory shows that the I-shaped section is a very efficient form for carrying both bending and shears loads in the plane of the web.

 

2. Main Features of Steel Deformed Rebar In Coil Small Sizes for Construction:

• Grade: Q235

• Type: Mild carbon steel

• Deflection: The stiffness of the I-beam will be chosen to minimize deformation

• Vibration: The stiffness and mass are chosen to prevent unacceptable vibrations, particularly in settings sensitive to vibrations, such as offices and libraries.

• Local yield: Caused by concentrated loads, such as at the beam's point of support.

 

3. Steel Deformed Rebar In Coil Small Sizes for Construction Images:

 

 

 

4. Steel Deformed Rebar In Coil Small Sizes for Construction Specification:

Mechanical Properties

Grade

Steel diametermm

≤16

16~40

40~60

60~100

Yield Point Δs/MPa

Q195

≥195

≥185

-

-

Q235

235

225

215

205

Tensile Strength

Q195

315~390

Q235

375~500

Elongation δ5%

Q195

≥33

≥32

-

-

Q235

26

25

24

23

 

5. FAQ

We have organized several common questions for our clients,may help you sincerely:

①Is this product same as W beam?

In the United States, the most commonly mentioned I-beam is the wide-flange (W) shape. These beams have flanges in which the planes are nearly parallel. Other I-beams include American Standard (designated S) shapes, in which flange surfaces are not parallel, and H-piles (designated HP), which are typically used as pile foundations. Wide-flange shapes are available in grade ASTM A992,[4] which has generally replaced the older ASTM grades A572 and A36.

②How to inspect the quality?

We have a professional inspection group which belongs to our company. We resolutely put an end to unqualified products flowing into the market. At the same time, we will provide necessary follow-up service assurance.

③Is there any advantage about this kind of product?

Steel I beam bar IPE has a reduced capacity in the transverse direction, and is also inefficient in carrying torsion, for which hollow structural sections are often preferred.

 

Q: Can steel rebars be replaced with other reinforcement materials?
Yes, it is possible to replace steel rebars with other materials for reinforcement. Steel rebars have been widely used in construction due to their strength and durability, but there have been advancements in alternative materials that offer comparable or even enhanced properties. One such alternative is the use of fiber-reinforced polymer (FRP) bars. These bars are composed of high-strength fibers embedded in a polymer matrix. FRP bars possess qualities such as lightweightness, corrosion-resistance, and high tensile strength, making them an appealing substitute for steel rebars. Additionally, they are non-conductive and non-magnetic, which makes them suitable for applications in areas with electromagnetic interference or in industries that require sensitivity to electronics. Another alternative is carbon fiber reinforced polymer (CFRP) bars, which are similar to FRP bars but are specifically reinforced with carbon fibers. CFRP bars offer even greater tensile strength and stiffness compared to steel rebars, making them particularly well-suited for structures that necessitate exceptional load-bearing capabilities. Moreover, natural fiber reinforced composites (NFRC) have been explored as an alternative to steel rebars. NFRC can be created using materials such as bamboo, jute, or sisal fibers embedded in a matrix material like cement or polymer. These natural fibers provide good tensile strength and can be a sustainable and cost-effective substitute for steel rebars, especially in regions where these fibers are readily available. In conclusion, although steel rebars have traditionally been the go-to choice for reinforcement materials in construction, alternatives such as FRP bars, CFRP bars, and NFRC can serve as viable replacements. The selection of reinforcement material depends on various factors including structural requirements, environmental conditions, and cost-effectiveness.
Q: Can steel rebars be used in structures with high seismic activity?
Yes, steel rebars can be used in structures with high seismic activity. Steel rebars have high tensile strength and provide reinforcement to concrete structures, making them more resistant to seismic forces. They help to improve the overall structural integrity and ensure that the building can withstand the shaking and ground movements caused by earthquakes.
Q: What is the standard length of steel rebars?
The standard length of steel rebars varies depending on the region and the specific requirements of the project. In the United States, for example, the standard length of steel rebars is commonly 20 feet or 6.1 meters. However, it is important to note that rebars can be cut and customized to different lengths as needed for a particular construction project. Additionally, in some countries or regions, rebars may be available in different standard lengths based on local construction practices and regulations. Therefore, it is essential to consult local codes and specifications to determine the standard length of steel rebars for a specific project.
Q: Can steel rebars be used in structures with high resistance to earthquakes?
Yes, steel rebars can be used in structures with high resistance to earthquakes. Steel rebars are commonly used in reinforced concrete structures to enhance their strength and durability. In earthquake-prone areas, it is crucial to design and construct buildings that can withstand seismic forces. Steel rebars, when properly incorporated into the structural design, can help enhance the overall seismic performance of a building. Steel rebars provide several advantages in earthquake-resistant structures. Firstly, they increase the tensile strength of concrete, which is otherwise weak in tension. This reinforcement helps to prevent cracking and failure of the concrete during seismic events. Additionally, steel rebars can improve the ductility of the structure, allowing it to absorb and dissipate energy during an earthquake. This ductile behavior helps to minimize structural damage and ensures that the building remains stable and safe. Furthermore, steel rebars can be used in conjunction with other seismic design techniques to enhance the overall performance of the structure. For example, they can be combined with special concrete mixes, such as high-strength or fiber-reinforced concrete, to further improve the seismic resistance. Additionally, advanced structural systems like moment frames or shear walls can be integrated with steel rebars to provide even greater earthquake resistance. However, it is important to note that the earthquake resistance of a structure does not solely rely on the use of steel rebars. Proper design, construction techniques, and adherence to seismic building codes are also crucial factors. Engineers must consider various aspects such as the building's location, soil conditions, and expected seismic loads to ensure the structural integrity and safety of the building. In conclusion, steel rebars can be effectively used in structures with high resistance to earthquakes. Their inclusion in reinforced concrete structures enhances the tensile strength and ductility, enabling the building to withstand seismic forces. However, it is essential to implement comprehensive seismic design strategies and adhere to building codes to ensure the overall safety and performance of the structure.
Q: How do steel rebars prevent the concrete from cracking under tension?
Steel rebars reinforce concrete and increase its structural integrity, preventing cracking under tension. Concrete has low tensile strength and tends to crack when subjected to tensile forces. However, when steel rebars are embedded in the concrete, they absorb and distribute these forces, acting as reinforcement. Typically made of high-strength steel, the rebars have a much higher tensile strength compared to concrete. As a result, when the concrete is under tension, the rebars bear most of the load, preventing cracking. The rebars act as a framework or skeleton within the concrete, resisting the tensile forces and ensuring its structural stability. Furthermore, the bond between the steel rebar and the concrete also plays a role in preventing cracking under tension. The ribbed or deformed surface of the rebars enhances the bond with the surrounding concrete, creating a strong connection. This bond allows the rebars to transfer the tensile forces to the concrete matrix more effectively, reducing the risk of cracking. By reinforcing the concrete, steel rebars help distribute the tensile forces evenly throughout the structure. This prevents localized stress concentrations and minimizes the chances of cracks forming. Additionally, if cracks do occur, the presence of rebars can help control their propagation by acting as barriers that restrict further spread. In conclusion, steel rebars provide reinforcement, increase the strength of concrete, and prevent cracking under tension. They bear the tensile forces, distribute them evenly, and enhance the bond between the rebar and the concrete. This reinforcement ensures the structural integrity of the concrete and helps prevent cracking.
Q: Are steel rebars suitable for use in aggressive environments?
Indeed suitable for use in aggressive environments are steel rebars. Commonly utilized in construction projects, particularly in reinforced concrete structures, steel rebars possess high tensile strength and durability. However, when exposed to corrosive elements like moisture, chloride ions, and chemicals, corrosion may occur, leading to weakened rebars and compromised structural integrity of the concrete. To counteract this issue, protective materials such as epoxy or zinc are often applied to steel rebars, creating a barrier against corrosion. Moreover, stainless steel rebars, with their superior corrosion resistance properties, are also employed in aggressive environments. In conclusion, although steel rebars generally prove suitable for aggressive environments, it is essential to consider specific conditions and implement appropriate protective measures to prevent corrosion and uphold the longevity of the reinforced concrete structure.
Q: How do steel rebars affect the shrinkage and creep of concrete?
Steel rebars play a significant role in mitigating the shrinkage and creep of concrete. The presence of rebars helps to improve the tensile strength of concrete, which reduces the occurrence of cracking and shrinkage. By providing reinforcement, steel rebars restrict the movement of concrete, minimizing the risk of shrinkage and creep over time.
Q: How do steel rebars contribute to the crack-resistance of concrete?
Steel rebars contribute to the crack-resistance of concrete by providing tensile strength to the structure. As concrete is strong in compression but weak in tension, the rebars act as reinforcement, absorbing the tensile forces that may lead to cracks. By distributing these forces throughout the concrete, rebars enhance the overall durability and structural integrity of the concrete, making it less prone to cracking.
Q: What are the common quality control tests for steel rebars?
Some common quality control tests for steel rebars include visual inspection for surface defects, measurement of dimensions and tolerances, tensile strength testing, bending tests, and chemical composition analysis.
Q: What is the effect of carbonation on steel rebars?
The primary impact of carbonation on steel rebars is negative. Carbonation is the process by which carbon dioxide from the atmosphere reacts with the alkaline compounds in concrete, resulting in a decrease in its pH level. This pH reduction gradually diminishes the protective layer of steel rebars known as the passivation layer. When carbonation compromises the passivation layer, the steel rebars become more susceptible to corrosion. Carbon dioxide reacts with moisture in the concrete, generating carbonic acid, which further lowers the pH level and speeds up the corrosion process. As corrosion advances, the steel rebars may lose their structural integrity, compromising the overall strength and durability of the concrete structure. Additionally, the expansion of corrosion products can apply pressure on the surrounding concrete, causing cracking and spalling. This exposes the steel rebars to more moisture and oxygen, exacerbating the corrosion process. Furthermore, carbonation can diminish the effectiveness of any protective coatings applied to the rebars, making them even more prone to corrosion. To mitigate the effects of carbonation on steel rebars, various preventive measures can be implemented. These measures include using concrete that is less permeable to carbon dioxide, ensuring appropriate concrete cover thickness, and employing corrosion-resistant steel with higher levels of chromium and/or other alloying elements. Regular monitoring and maintenance of concrete structures are also crucial to detect and address any signs of corrosion at an early stage. In conclusion, carbonation can have an adverse impact on steel rebars by compromising the passivation layer, resulting in corrosion and weakening of the structure. Therefore, it is essential to implement preventive measures and regularly maintain steel-reinforced concrete structures to ensure their long-term durability and safety.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords