Hot Rolled GB Standard Deformed Steel Rebars for Construction
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 25 m.t.
- Supply Capability:
- 200000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Product Description:
OKorder is offering Hot Rolled GB Standard Deformed Steel Rebars for Construction at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.
Product Applications:
Hot Rolled GB Standard Deformed Steel Rebars for Construction are ideal for structural applications and are widely used in the construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries.
1. Supporting members, most commonly in the house raising industry to strengthen timber bears under houses. Transmission line towers, etc
2. Prefabricated structure
3. Medium scale bridges
4. It is widely used in various building structures and engineering structures such as roof beams, bridges, transmission towers, hoisting machinery and transport machinery, ships, industrial furnaces, reaction tower, container frame and warehouse etc.
Product Advantages:
Hot Rolled GB Standard Deformed Steel Rebars for Construction are durable, strong, and resist corrosion.
Main Product Features:
· Premium quality
· Prompt delivery & seaworthy packing (30 days after receiving deposit)
· Corrosion resistance
· Can be recycled and reused
· Mill test certification
· Professional Service
· Competitive pricing
Product Specifications:
Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.
Product Applications:
High Quality Hot Rolled Equal Angle Steel Bars for Strcuture are ideal for structural applications and are widely used in the construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries.
1. Supporting members, most commonly in the house raising industry to strengthen timber bears under houses. Transmission line towers, etc
2. Prefabricated structure
3. Medium scale bridges
4. It is widely used in various building structures and engineering structures such as roof beams, bridges, transmission towers, hoisting machinery and transport machinery, ships, industrial furnaces, reaction tower, container frame and warehouse etc.
Product Advantages:
High Quality Hot Rolled Equal Angle Steel Bars for Constrcution are durable, strong, and resist corrosion.
Main Product Features:
· Premium quality
· Prompt delivery & seaworthy packing (30 days after receiving deposit)
· Corrosion resistance
· Can be recycled and reused
· Mill test certification
· Professional Service
· Competitive pricing
Product Specifications:
Specifications of Hot Rolled GB Standard Deformed Steel Rebars for Construction:
Standard | GB UK USA | HRB335 HRB400 HRB500 G460B, B500A, B500B,B500C GR40, GR60 | |
Diameter | 6mm,8mm,10mm,12mm,14mm,16mm,18mm,20mm, 22mm,25mm,28mm,32mm,36mm,40mm,50mm | ||
Length | 6M, 9M,12M or as required | ||
Packing | Export standard packing: wrapped by wire rod in bundles | ||
Each bundle weight | 2-3MT, or as required | ||
Trade terms | FOB, CFR, CIF | ||
Payment terms | TT payment in advance or Irrevocable LC at sight. | ||
Delivery Detail | within 45 days after received advanced payment or LC. | ||
Brand name | DRAGON |
Theoretical weight and section area of each diameter as below for your information:
Diameter(mm) | Section area (mm²) | Mass(kg/m) | Weight of 12m (kg) | Pcs/ton |
6 | 28.27 | 0.222 | 2.664 | 375.38 |
8 | 50.27 | 0.395 | 4.74 | 210.97 |
10 | 78.54 | 0.617 | 7.404 | 135.06 |
12 | 113.1 | 0.888 | 10.656 | 93.84 |
14 | 153.9 | 1.21 | 14.52 | 68.87 |
16 | 201.1 | 1.58 | 18.96 | 52.74 |
18 | 254.5 | 2.00 | 24 | 41.67 |
20 | 314.2 | 2.47 | 29.64 | 33.74 |
22 | 380.1 | 2.98 | 35.76 | 27.96 |
25 | 490.9 | 3.85 | 46.2 | 21.65 |
28 | 615.8 | 4.83 | 57.96 | 17.25 |
32 | 804.2 | 6.31 | 75.72 | 13.21 |
36 | 1018 | 7.99 | 98.88 | 10.43 |
40 | 1257 | 9.87 | 118.44 | 8.44 |
50 | 1964 | 15.42 | 185.04 | 5.40 |
Chemical Composition: (Please kindly find our chemistry of our material based on JIS as below for your information)
JISG3112 SD390 | Chemical Composition | ||||
C | Mn | Si | S | P | |
0.22 | 1.38 | 0.4 | 0.014 | 0.022 | |
Physical capability | |||||
Yield Strength(N/cm²) | Tensile Strength(N/cm²) | Elongation (%) | |||
620 | ≥400 | 21 |
The production process of Steel Rebar
1-Waling beam furnace 2-Roughing rolling group 3-Intermediate rolling train
4-Finishing rolling group 5-Water-cooling device 6-Walking beam cooler
7-Finishing equipment(including the cold scale shear,short feet collection system,
automatic counting device,bundling machine, collect bench)
Usage and Applications of Hot Rolled GB Standard Deformed Steel Rebars for Construction:
Deformed bar is widely used in buildings, bridges, roads and other engineering construction. Big to highways, railways, bridges, culverts, tunnels, public facilities such as flood control, dam, small to housing construction, beam, column, wall and the foundation of the plate, deformed bar is an integral structure material. With the development of world economy and the vigorous development of infrastructure construction, real estate, the demand for deformed bar will be larger and larger..
Packaging & Delivery of Hot Rolled GB Standard Deformed Steel Rebars for Construction:
Packaging Detail: products are packed in bundle and then shipped by container or bulk vessel, deformed bar is usually naked strapping delivery, when storing, please pay attention to moisture proof. The performance of rust will produce adverse effect.
Price: Keep lower operating costs so as to offer competitive price for our clients
Deformed Steel Rebars according to Korean standard
Note:
1. Our products are produced according to national standard (GB), if not, supply according to national standards (GB) or agreement as customer required.
2. Other Grade and Standard Deformed Steel Bar we can supply:
Grade: GR40/GR60, G460B/B500A/B500B/B500C,BST500S
Standard: ASTM, BS, DIN
The Minimum Order Quantity of these products is high, and need to be confirmed.
3. We can not only supply Deformed Steel Bar; if you need anything about building materials, please contact us for further information.
4. Please send us your detail specifications when inquire. We will reply to you as soon as possible. We sincerely hope we can establish a long stable business relationship.
- Q: How do steel rebars contribute to the fire resistance of concrete?
- Concrete's fire resistance is enhanced by steel rebars in several ways. Firstly, steel rebars possess a non-combustible nature and a high melting point, ensuring they do not burn or add fuel to fires. This characteristic aids in preventing the spread of fire and maintaining the concrete's structural stability during fire incidents. Additionally, steel rebars act as reinforcement within the concrete, boosting its overall strength and load-bearing capacity. This reinforcement effectively prevents cracking or fragmentation of the concrete under high temperatures caused by fire. The presence of steel rebars also enhances the concrete's ductility, enabling it to deform and absorb energy during fires, rather than abruptly shattering or collapsing. Moreover, steel's thermal conductivity surpasses that of concrete, enabling it to effectively conduct heat away from the fire zone. This assists in dissipating heat and preventing it from reaching critical levels that could compromise the concrete's structural integrity. By absorbing and distributing heat, steel rebars contribute to slowing down the temperature rise within the concrete during fires. In conclusion, steel rebars contribute to concrete's fire resistance by providing structural stability, improving strength and load-bearing capacity, enhancing ductility, and dissipating heat. These attributes make concrete structures reinforced with steel rebars more resilient, enabling them to withstand fires for extended periods. As a result, the safety of occupants is increased, and potential property damage is reduced.
- Q: Are steel rebars suitable for use in historical restoration projects?
- Depending on the specific requirements and circumstances, steel rebars may be appropriate for use in historical restoration projects. They possess high strength, durability, and the ability to effectively reinforce structures, making them a popular choice in modern construction and renovation endeavors. Nevertheless, it is crucial to consider the preservation and authenticity of the original structure when contemplating the utilization of steel rebars in historical restoration projects. Historical buildings often possess unique architectural features and materials that must be treated respectfully and preserved. In certain situations, the use of steel rebars may not be suitable, particularly if it compromises the historical integrity or visual appearance of the structure. This is particularly relevant for buildings with significant historical value or those protected by heritage regulations. If it is determined that steel rebars are necessary for structural reinforcement in a historical restoration project, it is vital to integrate them discreetly, minimizing their visual impact. This can be achieved by concealing them within the original materials or utilizing techniques that replicate the appearance of the original construction. In conclusion, while steel rebars offer structural advantages and durability, their use in historical restoration projects should be carefully evaluated to ensure they align with the preservation goals and requirements of the specific project. The preservation of historical authenticity should always be a priority in such endeavors.
- Q: How do steel rebars improve the flexural strength of concrete?
- Steel rebars improve the flexural strength of concrete by providing tensile strength, which is typically lacking in concrete. The rebars act as reinforcement, absorbing the tension forces that occur when the concrete is subjected to bending or flexing. This combination of concrete and steel rebars creates a composite material that is stronger and more resistant to cracking or breaking under flexural loads.
- Q: Can steel rebars be used in architectural concrete elements?
- Yes, steel rebars can be used in architectural concrete elements. They provide additional strength and reinforcement to the concrete structure, ensuring its durability and stability. Steel rebars are commonly used in architectural designs such as columns, beams, and slabs to enhance the overall structural integrity of the concrete elements.
- Q: How do steel rebars improve the ductility of a structure?
- Steel rebars improve the ductility of a structure by providing reinforcement and resistance to tension forces. When a structure is subjected to external loads, such as earthquakes or high winds, it experiences tensile stresses which can lead to cracking and failure. However, steel rebars, which are typically made of high-strength steel, are added to concrete structures to enhance their ability to withstand and distribute these forces. The presence of rebars in the concrete increases its tensile strength, allowing it to resist deformation and cracking. When the structure is subjected to tension, the rebars bear the majority of the load, preventing the concrete from failing. This redistribution of forces results in increased ductility, which is the ability of a material to undergo deformation without breaking. Furthermore, steel rebars also enhance the structural integrity of a building by preventing the propagation of cracks. As the concrete cracks under tension, the rebars act as a barrier, limiting the growth of these cracks and preventing them from spreading throughout the structure. This containment of cracks improves the overall resilience of the building, minimizing the risk of catastrophic failure. Overall, steel rebars play a crucial role in improving the ductility of a structure by enhancing the tensile strength, redistributing forces, and limiting crack propagation. By incorporating rebars into concrete, engineers can design and construct structures that are capable of withstanding a wide range of external forces, thereby ensuring the safety and durability of the building.
- Q: What are the guidelines for using steel rebars in pre-stressed or post-tensioned concrete elements?
- Several key considerations must be taken into account when using steel rebars in pre-stressed or post-tensioned concrete elements to ensure structural integrity and performance. 1. Design and Engineering: The initial step is to consult with a qualified structural engineer who specializes in pre-stressed or post-tensioned concrete design. They will determine the specific project's requirements for rebars, including size, spacing, and type, based on the structural loads, design requirements, and desired performance. 2. Material Selection: The rebars used in pre-stressed or post-tensioned concrete elements should adhere to industry standards, such as ASTM A615 or ASTM A706 for reinforcing steel. The rebars should possess adequate strength, ductility, and corrosion resistance to withstand environmental conditions and stress. 3. Placement and Anchorage: Precise placement and anchoring of the rebars within the concrete elements are necessary. The requirements for placement and anchorage will depend on the project's design and engineering specifications. Proper alignment and secure fastening of the rebars are crucial to ensure effective force transfer to the concrete. 4. Tensioning Process: In pre-stressed concrete elements, the rebars are tensioned before pouring the concrete. Specialized jacks or hydraulic systems are used to apply a predetermined amount of force to the rebars. Careful control of the tensioning force is vital to achieving the desired level of pre-stress without overloading the rebars or damaging the concrete. 5. Post-Tensioning: For post-tensioned concrete elements, the rebars are tensioned after the concrete has hardened. This involves passing the rebars through ducts or sleeves within the concrete and applying tension using hydraulic jacks. The post-tensioning force must be carefully calibrated to achieve the desired structural performance without excessive strain on the rebars or the concrete. 6. Quality Control and Inspection: Throughout the construction process, regular quality control and inspection are essential to ensure compliance with design specifications and industry standards. This includes verifying correct placement, alignment, and tensioning of the rebars, as well as checking for any defects or damage. 7. Maintenance and Durability: Proper maintenance is crucial for the long-term durability and performance of pre-stressed or post-tensioned concrete elements. This may involve periodic inspections, maintaining protective coatings, and addressing corrosion or deterioration promptly. By adhering to these guidelines, construction professionals can ensure the safe and effective use of steel rebars in pre-stressed or post-tensioned concrete elements, resulting in structurally sound and durable concrete structures.
- Q: How do steel rebars enhance the load-bearing capacity of a structure?
- Steel rebars enhance the load-bearing capacity of a structure by providing reinforcement and strengthening to the concrete. They are essentially embedded within the concrete and act as a skeleton or framework, offering additional strength to the structure. The primary function of steel rebars is to resist tension forces that the concrete alone may not be able to withstand. When a structure is subjected to heavy loads or external forces, such as earthquakes or wind, the concrete may crack or fail under the stress. However, the presence of steel rebars helps distribute and absorb these forces, preventing the concrete from breaking apart. The ribbed surface of rebars improves the bond between the steel and the concrete, ensuring effective load transfer between the two materials. This bond allows the rebars to resist tension and compression forces, as well as shear forces, resulting in an overall increase in load-bearing capacity. Furthermore, steel rebars help control and limit the width and depth of cracks that may occur in the concrete. By restraining crack propagation, rebars prevent the cracks from expanding and compromising the structural integrity of the building. This is particularly crucial in earthquake-prone regions, where the ability of a structure to withstand ground movements is of utmost importance. In addition to enhancing the load-bearing capacity, steel rebars also contribute to the durability and longevity of a structure. They have high tensile strength, which means they can withstand significant pulling forces without deforming or breaking. This property ensures that the structure remains stable and secure over time, even under dynamic or extreme loading conditions. Overall, steel rebars play a vital role in enhancing the load-bearing capacity of a structure by reinforcing the concrete, increasing its resistance to tension forces, and controlling crack propagation. Their presence significantly improves the structural integrity, durability, and safety of buildings, making them an essential component in modern construction practices.
- Q: What are the different types of steel rebars used in precast concrete constructions?
- There are several types of steel rebars commonly used in precast concrete constructions, including plain round bars, deformed bars, epoxy-coated bars, stainless steel bars, and galvanized bars. Each type offers specific properties and advantages depending on the project requirements and environmental conditions.
- Q: What is the process of calculating the required quantity of steel rebars for a project?
- The process of calculating the required quantity of steel rebars for a project involves several steps. First, the engineer or designer identifies the structural elements that require reinforcement, such as beams, columns, or slabs. Next, they determine the design requirements, including the desired strength, size, and spacing of the rebars. This is typically done by referring to the project's structural drawings, codes, and specifications. Once the design requirements are known, the engineer uses mathematical formulas and calculations to determine the quantity of rebars needed. These calculations consider factors such as the dimensions of the structural elements, the load-bearing capacity required, and the specific steel reinforcement design. The engineer then takes into account any additional factors that may affect the quantity of rebars required, such as laps, overlaps, and wastage. They may also consider the practicality and availability of standard bar lengths to minimize cutting and wastage. Finally, the engineer prepares a detailed bill of quantities, which specifies the quantity, size, and type of rebars required for each structural element. This information is crucial for procurement and construction purposes, ensuring that the right amount of steel reinforcement is available for the project.
- Q: How do steel rebars improve the structural integrity of a building?
- Steel rebars, also known as reinforcement bars, play a crucial role in enhancing the structural integrity of buildings. They are used in concrete construction to provide strength, durability, and resistance to various forces that a structure may encounter. One key way steel rebars improve the structural integrity of a building is by increasing its load-bearing capacity. When concrete is reinforced with rebars, it becomes more capable of withstanding heavy loads and forces such as those generated by gravity, wind, earthquakes, or even dynamic loads from human activities. The rebars act as a reinforcement network, distributing the load more evenly throughout the structure, preventing excessive deflection, and minimizing the risk of structural failure. Moreover, steel rebars improve the tensile strength of concrete, which is traditionally weak in tension. Concrete is great at bearing compression forces but lacks the ability to effectively resist pulling or stretching forces. By incorporating rebars into the concrete, the combination of materials works together to withstand both compression and tension forces more efficiently. This prevents cracks and fractures from propagating in the concrete, as the rebars act as a support system that holds the structure together. Another advantage of using steel rebars is their resistance to corrosion. Steel is highly durable and can withstand harsh environmental conditions, reducing the risk of degradation over time. This ensures the longevity of the building's structural elements and decreases the need for costly repairs or replacements. Additionally, steel rebars provide flexibility in design and construction. They can be molded into various shapes and sizes to accommodate specific structural requirements, making it possible to optimize the distribution of reinforcement where it is needed most. This flexibility allows architects and engineers to design buildings that are both aesthetically pleasing and safe, without compromising on structural integrity. In conclusion, steel rebars significantly improve the structural integrity of buildings by increasing load-bearing capacity, enhancing tensile strength, resisting corrosion, and providing design flexibility. By reinforcing concrete, they ensure that structures are better equipped to withstand various forces and maintain their stability and safety over time.
Send your message to us
Hot Rolled GB Standard Deformed Steel Rebars for Construction
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 25 m.t.
- Supply Capability:
- 200000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords