Special Steel SKD12 Round Forged Tool Steel
- Loading Port:
- China main port
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 30 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Specification
Specifications
SKD12 Flats
1.Dimension:10~620mmX50~1200mm
2.Delivery Conditon:annealed, black/milled surface
3.Short Delivery Time
Product information
Chemical Composition(%) | ||||||||
C | Si | Mn | P | S | Cr | Mo | V | |
0.95-1.02 | 0.10-0.40 | 0.40-0.80 | ≤0.030 | ≤0.030 | 4.80-5.50 | 0.90-1.20 | 0.15-0.35 | |
Use | ||||||||
1. corrosion resistance | ||||||||
2. wear resistance of high quality plastic mould | ||||||||
3. transparent plastic mould. | ||||||||
Heat Treatment | ||||||||
annealed, 229HBS max(optional)/after Q+T, hardness 28-32HRC(optional) | ||||||||
Melting Process | ||||||||
1. EAF: Electric Furnace+LF+VD(Optional) | ||||||||
2. ESR: Electric Furnace+LF+VD+Eleroslag Remelted(Optional) | ||||||||
UT Class | ||||||||
According to Standard of SEP 1921/84,100% Volume, Level C/c, D/d or E/e | ||||||||
Tolerance on Quantity | ||||||||
+/-10% Per Size Documents 1. Packing List 2. Invoice 3. CO. 4. Bill of Loading 5. Shipping Advice 6. Mill Test Certificate 7. The other files as you requested |
Product show
Workshop show
Shipping
1. FedEx/DHL/UPS/TNT for samples, Door-to-Door;
2. By Air or by Sea for batch goods, for FCL; Airport/ Port receiving;
3. Customers specifying freight forwarders or negotiable shipping methods!
Delivery Time: 3-7 days for samples; 5-25 days for batch goods.
Payment Terms
1.Payment: T/T, L/C, Western Union, MoneyGram,PayPal; 30% deposits; 70% balance before delivery.
2.MOQ: 1pcs
3.Warranty : 3 years
4.Package Informations: 1) EXPORT, In 20 feet (GW 25 ton) or 40 feet Container (GW 25 ton)
2)as customer's requirement
Why choose us?
(1) The leading exporter in China special steel industry.
(2) Large stocks for various sizes, fast delivery date.
(3) Good business relationship with China famous factories.
(4) More than 7 years steel exporting experience.
(5) Good after-sales service guarantee.
- Q:Are there any disadvantages of using special steel?
- There are several disadvantages associated with the use of special steel. To begin with, special steel tends to be more expensive compared to regular steel. This is primarily due to the additional alloying elements and heat treatments involved in its production, which contribute to the higher cost. As a result, it may not be the most cost-effective option for applications where cost is a major factor. Furthermore, special steel may have limited availability in comparison to regular steel. It is often produced in smaller quantities and may only be obtainable from specific suppliers. This can lead to longer lead times and difficulties in sourcing the required amount of special steel, particularly for large-scale projects. Additionally, the increased complexity of working with special steel can pose challenges. It may require specialized knowledge, skills, and equipment for handling and processing. If the necessary expertise or resources are not readily available, this can result in higher manufacturing costs and potential delays in production. Moreover, some special steel grades with high strength and hardness can be more prone to brittleness. This means they may be susceptible to cracking or breaking under certain conditions, especially when exposed to extreme temperatures or sudden impact loads. This limitation can be a disadvantage in applications that require high toughness or resistance to fracture. Lastly, special steel may have limited applications due to its specific properties. While it offers advantages such as corrosion resistance, high temperature resistance, or improved mechanical properties, these benefits may not be relevant or necessary for every application. Consequently, using special steel in such cases may incur unnecessary expenses without any tangible benefits. In conclusion, special steel has its drawbacks, including higher costs, limited availability, increased complexity, potential brittleness, and limited applicability. Therefore, it is crucial to carefully consider the specific requirements of a project before opting for special steel.
- Q:Can special steel be recycled?
- Yes, special steel can be recycled. Special steel, also known as alloy steel, is a type of steel that contains additional elements such as chromium, nickel, or molybdenum to enhance its properties. These additional elements do not hinder the recyclability of the steel. The recycling process for special steel is similar to that of regular steel. The steel is collected from various sources, such as scrap metal yards, demolition sites, or end-of-life products. It is then processed to remove impurities, sorted, and shredded into smaller pieces. The shredded steel is melted in a furnace to form molten steel, which is then cast into new products or used as raw material for manufacturing processes. Recycling special steel offers several benefits. Firstly, it helps conserve natural resources as it reduces the need for new steel production. Secondly, it reduces energy consumption and greenhouse gas emissions associated with steel manufacturing. Additionally, recycling steel helps decrease waste generation and promotes a circular economy by utilizing existing materials. Overall, special steel, like any other type of steel, can be recycled effectively, contributing to environmental sustainability and resource conservation.
- Q:How is special steel used in the chemical industry?
- Special steel is widely used in the chemical industry due to its excellent corrosion resistance properties. It is used to manufacture various equipment and components like storage tanks, pipes, valves, and reactors that come in contact with corrosive chemicals. Additionally, special steel's high strength and temperature resistance make it suitable for applications requiring robust and durable materials in chemical processing plants.
- Q:How does special steel contribute to the heat resistance of products?
- Special steel contributes to the heat resistance of products by offering superior mechanical properties that allow them to withstand high temperatures without deforming or losing their structural integrity. The unique composition and manufacturing process of special steel result in enhanced heat resistance, making it an ideal material for applications exposed to extreme heat conditions. Special steel is designed to have a high melting point, which means it can endure higher temperatures compared to standard steel. This is achieved by incorporating alloying elements such as chromium, nickel, molybdenum, or vanadium, which improve the steel's ability to withstand heat. These elements form stable oxide layers on the surface of the steel, acting as a barrier against oxidation and preventing the steel from losing strength or becoming brittle when exposed to high temperatures. Furthermore, special steel is often treated with heat-resistant coatings or undergoes specialized heat treatment processes to enhance its heat resistance even further. These treatments can include quenching and tempering, annealing, or precipitation hardening, depending on the specific requirements of the product. These processes alter the steel's microstructure, improving its resistance to thermal fatigue, creep, and thermal shock. The heat resistance provided by special steel allows for the creation of products that can operate in demanding environments such as aerospace, automotive, power generation, and industrial applications. For instance, in the aerospace industry, special steel is used to manufacture components like turbine blades that are exposed to extremely high temperatures in jet engines. In the automotive industry, it is utilized for manufacturing exhaust systems and engine components that need to withstand intense heat from combustion processes. In summary, special steel contributes to the heat resistance of products by offering a higher melting point, improved oxidation resistance, and enhanced mechanical properties that allow them to maintain their structural integrity and functionality even under extreme heat conditions. This makes special steel an essential material for various industries seeking reliable and durable solutions that can withstand high temperatures.
- Q:Can special steel be used in the paper manufacturing industry?
- Yes, special steel can be used in the paper manufacturing industry. Special steels, such as stainless steel, can be used to make various components and equipment used in the paper manufacturing process. These steels offer excellent corrosion resistance, high strength, and durability, making them suitable for applications like paper machine parts, rollers, blades, and screens. Additionally, special steels can withstand high temperatures and mechanical stress, enhancing the overall efficiency and reliability of paper manufacturing operations.
- Q:What are the main applications of special steel in the energy storage industry?
- Special steel is widely used in the energy storage industry for various applications. One of the main applications is in the manufacturing of high-quality battery cases, where the steel's exceptional strength and corrosion resistance ensure the safety and longevity of the batteries. Additionally, special steel is used in the construction of energy storage systems, such as pumped hydro storage and compressed air energy storage, due to its durability and resistance to extreme conditions. Overall, special steel plays a crucial role in ensuring the efficiency, reliability, and safety of energy storage technologies in the industry.
- Q:What are the different surface protection methods used for special steel?
- There are several surface protection methods used for special steel to enhance its durability and resistance to various forms of damage. One commonly used method is galvanizing, where a layer of zinc is applied to the surface of the steel. This helps to protect the steel from corrosion and rusting, increasing its lifespan and maintaining its appearance. Galvanizing can be done through hot-dip galvanizing or electroplating, depending on the specific requirements of the steel. Another method is powder coating, which involves applying a dry powder to the steel surface and then curing it in high temperatures. This creates a protective layer that is resistant to chipping, scratching, and fading. Powder coating is often used for aesthetic purposes as it provides a wide range of color options and can improve the steel's appearance. Additionally, special steel can be protected using various types of paints and coatings. These coatings can be applied through spray or brush, and they provide a barrier against corrosion, chemicals, and UV radiation. Epoxy, polyurethane, and acrylic coatings are commonly used for this purpose, depending on the specific needs and environment the steel will be exposed to. Furthermore, stainless steel is inherently resistant to corrosion due to its composition, but it can be further protected by passivation. Passivation is a chemical treatment that removes iron particles from the surface, preventing corrosion and enhancing the steel's resistance to staining and pitting. Lastly, special steel can also be protected by applying a layer of ceramic or enamel coating. These coatings provide a high level of resistance to heat, chemicals, and physical abrasion. They can be applied through spraying or dipping and are often used in environments where the steel will be exposed to extreme conditions or aggressive substances. In conclusion, the different surface protection methods used for special steel include galvanizing, powder coating, painting, passivation, and ceramic/enamel coating. These methods aim to enhance the steel's durability, resistance to corrosion, and overall lifespan, ensuring that it can withstand various environmental factors and maintain its structural integrity.
- Q:What are the main applications of special steel in the telecommunications sector?
- Special steel is widely used in the telecommunications sector for various applications. One of the main uses is in the manufacturing of transmission towers and antennas, where high strength and corrosion resistance properties are crucial for ensuring stability and durability. Special steel is also utilized in the production of cables and wires, providing excellent conductivity and resistance to wear and tear. Additionally, special steel is employed in the fabrication of satellite communication equipment, providing the necessary strength and resilience to withstand harsh environmental conditions. Overall, special steel plays a vital role in the telecommunications sector by enabling the construction of reliable and high-performance infrastructure.
- Q:How does special steel contribute to the wear resistance of products?
- The wear resistance of products is enhanced by special steel in various ways. Firstly, special steel possesses high strength and hardness, enabling it to withstand heavy loads and resist deformation. This characteristic is particularly vital in applications where products are exposed to abrasive forces or repetitive stress, such as in machinery parts or cutting tools. Furthermore, special steel often includes specific alloying elements that augment its wear resistance. For instance, the introduction of chromium can create a protective layer of chromium oxide on the steel's surface, acting as a barrier against corrosion and wear. Similarly, the incorporation of vanadium or molybdenum can heighten the steel's hardness and toughness, rendering it more resilient to wear and fatigue. Additionally, heat treatment can be employed to further enhance the wear resistance of special steel. Techniques like quenching and tempering can modify the steel's microstructure, resulting in a fine-grained and uniform composition. Consequently, this leads to improved hardness, increased resistance to wear, and enhanced dimensional stability. In conclusion, special steel contributes to the wear resistance of products due to its inherent strength and hardness, the presence of alloying elements that enhance wear resistance, and its capacity to undergo heat treatment for improved properties. These characteristics make special steel an exceptional choice for applications where durability and longevity are of utmost importance.
- Q:How does special steel perform in terms of high-temperature strength?
- Special steel typically performs very well in terms of high-temperature strength. It has excellent resistance to thermal fatigue, oxidation, and creep, allowing it to withstand extreme heat conditions without losing its structural integrity or mechanical properties. This makes special steel a preferred choice in applications where high-temperature strength is crucial, such as in the aerospace, power generation, and petrochemical industries.
1. Manufacturer Overview |
|
---|---|
Location | |
Year Established | |
Annual Output Value | |
Main Markets | |
Company Certifications |
2. Manufacturer Certificates |
|
---|---|
a) Certification Name | |
Range | |
Reference | |
Validity Period |
3. Manufacturer Capability |
|
---|---|
a)Trade Capacity | |
Nearest Port | |
Export Percentage | |
No.of Employees in Trade Department | |
Language Spoken: | |
b)Factory Information | |
Factory Size: | |
No. of Production Lines | |
Contract Manufacturing | |
Product Price Range |
Send your message to us
Special Steel SKD12 Round Forged Tool Steel
- Loading Port:
- China main port
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 30 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords