SGS Approved DIN 1623 St12 Grade Cold Rolled Steel Sheet in Coils
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 3 m.t.
- Supply Capability:
- 100000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Specification
SGS Approved DIN 1623 St12 Grade Cold Rolled Steel Sheet in Coils
Detailed Information of SGS Approved DIN 1623 St12 Grade Cold Rolled Steel Sheet in Coils
C | Si | P | S | yield Strength MAp | Tensile strength MAp | Elongation % | ||
A36 | 0.24 | 0.4 | 0.045 | 0.03 | 250 | 400-520 | 26 | |
C | Si | Mn | P | S | Cu | |||
A283 | ≤0.27 | 0.15-0.4 | ≤0.9 | ≤0.035 | ≤0.04 | ≥0.2 | ||
Thickness: | 6mm, 8mm, 12mm, 16mm, 20mm, 25mm, 30mm, 50mm, 80mm, 100mm, 150mm, 200mm | |||||||
Width: | 1500mm, 1800mm, 2000mm, 2200mm, 2500mm | |||||||
Length: | 6000mm, 8000m, can cut to width and length | |||||||
Packing Details; | according to customer‘s require or export’s standard | |||||||
Delivery time; | 7 days for stock sizes, 20-25 days for new production sizes | |||||||
Port: | Tianjin China |
Related Products Overviews of SGS Approved DIN 1623 St12 Grade Cold Rolled Steel Sheet in Coils
Product Name | Typical Grades | Diameter(mm) | Standard Adopted |
Carbon Steel | 20 (1020/S20C/C22) |
Ø16-Ø300 |
GB/SAE/ JIS/DIN |
40 (1040/S40C/C40) | |||
45 (1045/S45C/C45) | |||
Bearing Steel | GCr9 (51100/SUJ1) |
Ø12-Ø250 | |
GCr15 (52100/SUJ2/100Gr6) | |||
GCr9SiMn (A485-Gr.1/SUJ3) | |||
Cr-Mo Steel | 20Cr (5120/SCr420H/20Cr4) |
Ø12-Ø250 | |
40Cr (5140/SCr440/41Cr4) | |||
42CrMo(4140/SCM440/42CrMo4) | |||
Gear Steel | 20CrNiMo |
Ø16-Ø600 | |
20CrMn(5115/SMnC420/20MnCr5) | |||
20CrNiMo(8620/SNCM220/20CrMiMo2) |
Related Products Application of SGS Approved DIN 1623 St12 Grade Cold Rolled Steel Sheet in Coils
Carbon Steel | l Mold bottom l Plastic mold l Construction machinery parts l Automobile parts l Security grills l Screens l Construction |
Bearing Steel | l Aerospace l Navigation l Nuclear energy l Chemical industry l Electronic information l Petrochemical l Instrument and meter l Transportation |
Cr-Mo Steel | l Mechanism & Fasteners gear l Stressed components for vehicles l Engines and machines l Parts of larger cross-section |
Gear Steel | l All kinds of gears l Statically and dynamically stressed component for vehicles l Engines and machine l Larger cross-section parts l Crankshafts |
Company Introduction of SGS Approved DIN 1623 St12 Grade Cold Rolled Steel Sheet in Coils
CNBM International Corporation is the most import and export platform of CNBM group(China National Building Material Group Corporation) ,which is a state-owned enterprise, ranked in 270th of Fortune Global 500 in 2015.
With its advantages, CNBM International are mainly concentrate on Cement, Glass, Iron and Steel, Ceramics industries and devotes herself for supplying high quality series of refractories as well as technical consultancies and logistics solution.
After-sale service | l CNBM provides the services and support you need for every step of our cooperation. We’re the business partners you can trust; you can relax and get on with doing business. l For any problem, please kindly contact us at any your convenient time, we’ll reply you in our first priority within 24 hours
|
Advantages
| l Industry experience over 20 years. l Shipment of goods -More than 70 countries worldwide. l The most convenient transport and prompt delivery. l Competitive price with best service. l High technical production line with top quality products. l High reputation based on best quality products.
|
Packaging & Delivery of SGS Approved DIN 1623 St12 Grade Cold Rolled Steel Sheet in Coils
Packaging Detail | Sea worthy packing /as per customer's packing instruction |
Delivery Detail | 15 ~ 40 days after receiving the deposit |
Products Show
FAQ:
Are you a trading company or manufacturer? | Manufacturer |
What’s the MOQ? | 3 metric ton |
What’s your delivery time? | 15-35 days after downpayment received |
Do you Accept OEM service? | Yes |
what’s your delivery terms? | FOB/CFR/CIF |
What's the Payment Terms? | 30% as deposit,70% before shipment by T/T |
Western Union acceptable for small amount. | |
L/C acceptable for large amount. | |
Scrow ,Paybal,Alipay are also ok | |
Why choose us? | Chose happens because of quality, then price, We can give you both. Additionally, we can also offer professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposals. |
What's your available port of Shipment? | Main Port, China |
What’s your featured services? | Our service formula: good quality+ good price+ good service=customer's trust
|
Where are your Market? | Covering more than 160 countries in the world |
- Q: What are the advantages of using special steel in manufacturing?
- There are several advantages of using special steel in manufacturing. Firstly, special steel offers a higher level of strength and durability compared to regular steel. This is due to the presence of various alloying elements such as chromium, nickel, and manganese, which enhance the material's mechanical properties. As a result, special steel can withstand heavy loads, resist wear and tear, and endure extreme conditions, making it an ideal choice for manufacturing applications that require high strength and longevity. Secondly, special steel provides excellent corrosion resistance. The addition of alloying elements like chromium forms a protective oxide layer on the surface of the steel, preventing it from rusting or corroding when exposed to moisture or harsh environments. This corrosion resistance is crucial in industries such as marine, automotive, and construction, where the materials are constantly exposed to water, salt, and chemicals. Furthermore, special steel offers exceptional heat resistance and heat transfer properties. These properties are crucial in manufacturing processes that involve high temperatures, such as forging, casting, and heat treatment. Special steel can retain its strength and structural integrity even at elevated temperatures, allowing manufacturers to produce components that need to withstand extreme heat conditions. Another advantage of using special steel in manufacturing is its versatility. Special steel can be easily customized and tailored to meet specific requirements. It can be modified to exhibit various mechanical properties, such as hardness, toughness, or flexibility, depending on the application. This flexibility allows manufacturers to develop components with precise characteristics, ensuring optimal performance and efficiency. Lastly, special steel is often more cost-effective in the long run. Although the initial costs of special steel may be higher than regular steel, its superior durability and longevity result in reduced maintenance and replacement costs. Additionally, the enhanced properties of special steel can lead to improved energy efficiency and reduced material waste, contributing to overall cost savings in the manufacturing process. In conclusion, the advantages of using special steel in manufacturing include increased strength and durability, excellent corrosion resistance, superior heat resistance, versatility, and long-term cost-effectiveness. These benefits make special steel a preferred choice for various industries, ensuring the production of high-quality and reliable components.
- Q: What are the applications of special steel in the oil and gas manufacturing process?
- Special steel is used extensively in the oil and gas manufacturing process for various applications. It is commonly used in the construction of pipelines, vessels, and storage tanks due to its high strength and resistance to corrosion. Special steel is also utilized in drilling equipment, such as drill bits and casings, to withstand the harsh conditions encountered during drilling operations. Additionally, it is employed in the manufacturing of valves, fittings, and other critical components that need to endure high pressure and extreme temperatures. Overall, special steel plays a crucial role in ensuring the integrity and longevity of oil and gas infrastructure.
- Q: How does special steel contribute to the creep resistance of products?
- Special steel contributes to the creep resistance of products through its unique properties and composition. Creep is the gradual deformation of a material under constant stress over time, and it is a critical concern in industries that require high temperatures and prolonged usage. Special steel, also known as high-temperature steel or heat-resistant steel, is specifically designed to withstand these extreme conditions and minimize creep. One of the key factors contributing to the creep resistance of special steel is its high melting point. Special steel is typically alloyed with elements such as chromium, nickel, molybdenum, and vanadium, which significantly increase its melting point compared to ordinary steel. This enhanced heat resistance allows special steel to maintain its structural integrity and resist deformation even at elevated temperatures. Moreover, the unique microstructure of special steel plays a crucial role in its creep resistance. Special steel is engineered to have a fine-grained structure, which improves its strength and prevents the movement of dislocations within the material. Dislocations are defects in the atomic arrangement of a material that can lead to creep deformation. By minimizing the movement of dislocations, special steel exhibits higher resistance to creep and maintains its shape and dimensional stability over extended periods. In addition to its microstructure, special steel often has a higher content of certain alloying elements. For instance, the addition of elements like molybdenum and vanadium enhances the creep strength of special steel by forming stable carbides within the material. These carbides act as barriers to dislocation movement, further impeding creep deformation and improving the overall creep resistance of the product. Furthermore, special steel is often subjected to advanced heat treatment processes, such as quenching and tempering, to optimize its mechanical properties and enhance its creep resistance. These heat treatments help to refine the microstructure, improve the distribution of alloying elements, and increase the hardness and strength of the material, all of which contribute to better resistance against creep. Overall, special steel's ability to withstand high temperatures, its unique microstructure, and its alloying elements and heat treatment processes combine to provide exceptional creep resistance. This makes special steel an ideal choice for various applications that require durability and longevity under extreme thermal conditions, such as gas turbines, nuclear reactors, high-temperature boilers, and aerospace components.
- Q: What are the main applications of special steel in the telecommunications sector?
- Special steel is widely used in the telecommunications sector for various applications. One of the main uses is in the manufacturing of transmission towers and antennas, where high strength and corrosion resistance properties are crucial for ensuring stability and durability. Special steel is also utilized in the production of cables and wires, providing excellent conductivity and resistance to wear and tear. Additionally, special steel is employed in the fabrication of satellite communication equipment, providing the necessary strength and resilience to withstand harsh environmental conditions. Overall, special steel plays a vital role in the telecommunications sector by enabling the construction of reliable and high-performance infrastructure.
- Q: How does quenching and tempering affect the hardness of special steel?
- Special steel can have its hardness and mechanical properties improved through the use of heat treatment processes known as quenching and tempering. During quenching, the steel undergoes rapid cooling from a high temperature to either room temperature or below. This is typically achieved by immersing the steel in a quenching medium like oil or water. The quick cooling results in the formation of a martensitic structure, which is characterized by high hardness and brittleness. Quenching significantly enhances the hardness of the steel. However, the brittleness of the martensitic structure limits its usability in many applications. To address this issue, the steel then undergoes tempering. Tempering entails reheating the quenched steel to a temperature below the lower critical temperature, usually ranging from 200 to 600 degrees Celsius. The steel is held at this temperature for a specific period of time. This process facilitates the transformation of the brittle martensite into a more ductile structure known as tempered martensite. Tempering reduces the hardness of the steel but imparts improved toughness and ductility. The actual hardness achieved after tempering depends on the tempering temperature and time. Higher temperatures and longer times result in a greater reduction in hardness. By carefully adjusting the tempering parameters, a balance between hardness and toughness suitable for the intended application can be achieved. To summarize, quenching and tempering have a significant impact on the hardness of special steel. Quenching increases hardness by creating a martensitic structure, while tempering reduces hardness but enhances toughness and ductility. The specific hardness achieved through these processes can be controlled by adjusting the quenching and tempering parameters to meet the desired mechanical properties for the specific application.
- Q: How does special steel contribute to the performance of industrial machinery?
- Special steel plays a crucial role in enhancing the performance of industrial machinery in various ways. Firstly, special steel possesses superior mechanical properties such as high strength, hardness, and toughness, which make it suitable for withstanding heavy loads, vibrations, and impact forces commonly encountered in industrial applications. This enables the machinery to operate efficiently and reliably under demanding conditions. Moreover, special steel has excellent corrosion resistance, which is particularly important in industries where machinery is exposed to harsh environments or corrosive substances. By preventing the degradation of components due to corrosion, special steel helps to extend the lifespan of the machinery and reduce maintenance costs. Additionally, special steel can be tailored to specific applications through various alloying elements and heat treatments. This allows manufacturers to optimize the material's properties to meet the specific requirements of the industrial machinery, such as wear resistance, heat resistance, or high-temperature strength. By using special steel, manufacturers can achieve higher performance levels and improve the overall efficiency of their machinery. Furthermore, special steel offers superior dimensional stability and machinability. This ensures that components can be manufactured to precise specifications, thereby reducing the potential for errors or inaccuracies that may affect the performance of the machinery. The machinability of special steel also allows for easier fabrication and assembly, improving the overall production process and reducing manufacturing costs. In conclusion, special steel contributes significantly to the performance of industrial machinery through its superior mechanical properties, corrosion resistance, tailorability, dimensional stability, and machinability. By utilizing special steel in the construction of machinery components, manufacturers can enhance the durability, reliability, and efficiency of their products, ultimately leading to improved productivity and profitability in various industries.
- Q: What is the hardness of special steel?
- The hardness of special steel can vary depending on the specific composition and heat treatment, but it is generally known for its high hardness and strength.
- Q: How is the toughness of special steel measured?
- The toughness of special steel is typically measured using specific tests and methodologies that evaluate its ability to absorb energy and resist fracture. One common method is the Charpy V-Notch (CVN) test, which involves striking a notched specimen with a pendulum hammer and measuring the energy absorbed during fracture. The results are expressed as the amount of energy absorbed per unit area, usually in joules per square centimeter (J/cm²) or foot-pounds per square inch (ft-lb/in²). Another test commonly used is the Izod test, which is similar to the CVN test but uses a different specimen geometry. Additionally, other mechanical tests like tensile strength, impact strength, and fracture toughness measurements can also be used to assess the toughness of special steel. These tests help engineers and manufacturers determine the suitability of special steel for various applications, especially those that require high resistance to impact or sudden loading.
- Q: How does special steel resist corrosion?
- Special steel resists corrosion due to the presence of alloying elements, such as chromium, nickel, and molybdenum, which form a protective oxide layer on its surface. This oxide layer acts as a barrier, preventing the steel from coming into direct contact with corrosive agents, such as moisture, oxygen, and chemicals, thereby significantly reducing the chances of corrosion.
- Q: How does special steel perform in heat treatment applications?
- When it comes to heat treatment applications, special steel is specifically engineered to excel. Unlike regular steel, special steel is enriched with specific elements that enhance its heat resistance and improve its mechanical properties. Through processes like annealing, quenching, tempering, or hardening, special steel undergoes structural changes that result in increased strength, hardness, toughness, and wear resistance. The exceptional performance of special steel in heat treatment applications can be attributed to its unique alloying elements, including chromium, molybdenum, nickel, and vanadium. These elements create various carbides, nitrides, or intermetallic compounds during heat treatment, contributing to the overall enhancement of the steel's properties. For example, chromium forms chromium carbides, which boost hardness and corrosion resistance, while molybdenum and vanadium enhance hardenability and wear resistance. Furthermore, special steel exhibits remarkable dimensional stability during heat treatment. It possesses a low tendency to warp or distort, ensuring that the final product retains its desired shape and dimensions. This dimensional stability is especially crucial for applications that require precise tolerances or intricate designs. Moreover, special steel offers consistent and dependable heat treatment results. Its composition and microstructure are meticulously controlled, guaranteeing a predictable response to heat treatment processes. This enables manufacturers to consistently achieve the desired mechanical properties, minimizing the risk of inconsistencies or failures in the end product. In conclusion, special steel excels in heat treatment applications. Its exceptional alloying elements, dimensional stability, and reliable heat treatment response make it an ideal choice for applications that necessitate improved strength, hardness, toughness, and wear resistance. Whether it is for automotive components, tooling, or industrial machinery, special steel delivers dependable and enhanced performance after undergoing heat treatment processes.
Send your message to us
SGS Approved DIN 1623 St12 Grade Cold Rolled Steel Sheet in Coils
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 3 m.t.
- Supply Capability:
- 100000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords