SAE AISI ASTM 42CrMo4/4140 Alloy Steel Bar
- Loading Port:
- China main port
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 30 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Specification
SAE AISI ASTM 42CrMo4/4140 Alloy Steel Bar
Product Information:
1. Features Specifications: 42CrMo4 Alloy Steel Bar
2. Commodity: 42CrMo4 Alloy Steel Bar
Hot rolling craftwork and fine mechanical performance
Chemical components meet standards, delivery in black skin
3. Standards:
a) GB/T3077 42CrMo
b) JiS SCM440
c) Din 42CrMo4
d) ASTM 4140
4. Size: dia 12-160mm
5. Length:6M above
6. Packing:Bundles with iron wires
Product Overviews:
Product Name | Typical Grades | Diameter(mm) | Standard adopted |
Carbon Steel | 20 (1020/S20C/C22) | Ø16-Ø300 | GB/SAE/JIS/DIN |
40 (1040/S40C/C40) | |||
45 (1045/S45C/C45) | |||
Bearing Steel | GCr9 (51100/SUJ1) | Ø12-Ø250 | |
GCr15 (52100/SUJ2/100Gr6) | |||
GCr9SiMn (A485-Gr.1/SUJ3) | |||
Cr-Mo Steel | 20Cr (5120/SCr420H/20Cr4) | Ø12-Ø250 | |
40Cr (5140/SCr440/41Cr4) | |||
42CrMo(4140/SCM440/42CrMo4) | |||
Gear Steel | 20CrNiMo | Ø16-Ø600 | |
20CrMn(5115/SMnC420/20MnCr5) | |||
20CrNiMo(8620/SNCM220/20CrMiMo2) |
Product Show:
Our Advantages:
· Industry experience over 20 years.
· Shipment of goods -More than 70 countries worldwide.
· The most convenient transport and prompt delivery.
· Competitive price with best service.
· High technical production line with top quality products.
· High reputation based on best quality products.
With our experienced, enthusiastic and dynamic staffs, we assure to bring you the products with best quality, reasonable prices and good after-sales services under the motto: Friends First, Business After.
Communication, Experience, Expertise and Best efforts are our Promises to you.
- Q: How is magnetic stainless steel used in the production of magnetic components?
- Magnetic stainless steel is commonly used in the production of magnetic components due to its unique combination of corrosion resistance and magnetic properties. It is particularly suitable for applications where both strength and resistance to oxidation are required. The stainless steel is typically formed into various shapes and sizes, such as rods or sheets, and then processed into the desired magnetic component. This can include items like magnets, transformer cores, or magnetic shielding components. The magnetic properties of the stainless steel facilitate efficient magnetization, making it a valuable material for the production of magnetic components in various industries.
- Q: What are the different applications of tool special steel?
- Tool special steel has various applications across industries such as automotive, aerospace, construction, and manufacturing. It is commonly used for making cutting tools, dies, molds, and components that require high strength, durability, and resistance to wear and corrosion. Additionally, tool special steel finds use in power transmission systems, machine parts, and even surgical instruments. Its versatility and ability to withstand extreme conditions make it a crucial material in many applications where precision and reliability are paramount.
- Q: How does special steel perform in electrical conductivity applications?
- Special steel, also known as stainless steel, offers excellent electrical conductivity properties in various applications. It is widely used in electrical engineering and electronics due to its high corrosion resistance and low electrical resistance. The addition of specific alloys such as chromium and nickel enhances its conductivity, making it an ideal choice for conducting electricity efficiently. In electrical conductivity applications, special steel exhibits low resistivity, allowing for the smooth flow of electrical current without significant loss of energy. Its low resistance minimizes the generation of heat, which is crucial for preventing overheating and ensuring the efficient operation of electrical components. Special steel also possesses excellent magnetic properties, making it suitable for applications that require both electrical conductivity and magnetic strength. This property is particularly useful in the production of transformers, motors, and generators. Moreover, special steel is highly durable and can withstand harsh environmental conditions, making it suitable for outdoor applications. Its corrosion resistance prevents the formation of rust, ensuring a long lifespan and consistent performance even in challenging environments. In summary, special steel is an excellent choice for electrical conductivity applications due to its low electrical resistance, high corrosion resistance, and exceptional durability. Its unique properties make it a preferred material in various industries that rely on efficient and reliable electrical conductivity.
- Q: What are the main characteristics of wear-resistant steel?
- The main characteristics of wear-resistant steel include high hardness, toughness, and abrasion resistance. It is designed to withstand harsh conditions, such as heavy impact and abrasion, without significant wear or damage. Additionally, wear-resistant steel often has low maintenance requirements and a long lifespan, making it ideal for applications in industries such as mining, construction, and manufacturing.
- Q: What are the different heat-resistant grades of special steel?
- There are several heat-resistant grades of special steel, including stainless steels like 304H, 310H, and 347H, as well as nickel alloys like Inconel 600, Inconel 625, and Hastelloy C276. These grades are specifically designed to withstand high temperatures and maintain their strength and corrosion resistance even in extreme heat environments.
- Q: How is special steel used in the medical industry?
- Special steel is used in the medical industry for a variety of applications such as surgical instruments, implants, and medical devices. The properties of special steel, including its strength, corrosion resistance, and biocompatibility, make it ideal for these purposes. It ensures the safety and effectiveness of medical procedures, allowing for precise and durable tools and implants that are essential for patient care.
- Q: What is the process of manufacturing special steel?
- The process of manufacturing special steel involves several steps to ensure the production of high-quality and durable steel with specific properties. 1. Raw Materials Selection: The first step is to carefully select the raw materials required for making special steel. This includes iron ore, coal, and other alloying materials such as chromium, nickel, and manganese, depending on the desired properties of the final product. 2. Melting: The selected raw materials are then melted in a large furnace, often through the use of electric arc furnaces or basic oxygen furnaces. These furnaces heat the raw materials to extremely high temperatures, typically around 1,600 to 2,000 degrees Celsius, to transform them into molten metal. 3. Refining: Once the raw materials are melted, the molten metal undergoes a refining process to remove impurities. This is done through techniques like degassing, desulphurization, and deoxidation, ensuring that the steel is free from unwanted elements that may negatively impact its properties. 4. Alloying: After refining, alloying elements are added to the molten metal to achieve the desired properties. These elements can modify the steel's strength, hardness, corrosion resistance, and other characteristics. The specific alloying elements and their proportions depend on the intended application of the special steel. 5. Continuous Casting: The molten steel is then poured into a continuous casting machine, which solidifies it into semi-finished products called billets, blooms, or slabs. This continuous casting process ensures a consistent and uniform structure throughout the steel. 6. Hot Rolling: The semi-finished products are then reheated and passed through a series of hot rolling mills. This process involves reducing the thickness and shaping the steel into various forms such as bars, rods, plates, or sheets, depending on the intended use. 7. Heat Treatment: After hot rolling, the steel may undergo heat treatment processes such as annealing, quenching, tempering, or case hardening. These treatments help to further enhance the mechanical properties of the steel, such as its hardness, toughness, and ductility. 8. Finishing: The final step involves surface finishing and quality control measures. The steel is inspected for any defects or imperfections that may have occurred during the manufacturing process. Surface treatments like pickling or galvanizing can also be applied to enhance the steel's appearance and protect it from corrosion. Overall, the process of manufacturing special steel is a complex and precise operation that requires careful selection of raw materials, melting, refining, alloying, continuous casting, hot rolling, heat treatment, and finishing. This ensures that the resulting steel meets the specific requirements and performance characteristics demanded by various industries.
- Q: What are the different food processing grades of special steel?
- In the food industry, there are numerous special steel grades used for food processing. These grades are tailor-made to meet the stringent requirements of food processing, guaranteeing product safety and quality. One widely employed grade of special steel for food processing is AISI 304 stainless steel. This grade is renowned for its exceptional resistance to corrosion, making it suitable for environments where food is processed. Additionally, it exhibits high resistance to chemicals and acids, enhancing its suitability for food processing applications. Another frequently utilized grade in the food industry is AISI 316 stainless steel. This grade offers superior corrosion resistance compared to AISI 304 and is commonly employed in applications involving direct contact between equipment and food or food-related substances. Furthermore, AISI 316 stainless steel withstands high temperatures, making it suitable for use in food processing operations that involve intense heat. Moreover, specific food processing grades of special steel have been developed for environments with stringent hygiene requirements. These grades, such as AISI 316L and 1.4404, possess a smoother surface finish, preventing bacterial buildup and facilitating easier cleaning. Overall, the various grades of special steel used in food processing offer different levels of resistance to corrosion, temperature, and hygiene. These characteristics ensure that the steel utilized in food processing equipment is durable, safe, and compliant with industry standards.
- Q: How does special steel contribute to the formability of products?
- Special steel, which is also known as alloy steel, plays a vital role in enhancing the formability of products. Various industries, including automotive, aerospace, and construction, find special steel to be an ideal choice due to its unique properties and composition. One way in which special steel contributes to product formability is through its exceptional strength and durability. Engineered to have a higher tensile strength compared to regular steel, special steel can undergo significant deformation without breaking or cracking. This characteristic allows manufacturers to shape and mold the steel into intricate and complex designs, resulting in products with improved formability. Moreover, special steel offers excellent resistance to deformation, specifically elastic deformation. This means that even after enduring significant stress or strain, the steel can return to its original shape, minimizing the risk of permanent deformation. Such a feature proves advantageous in applications where products need to withstand repeated bending or shaping without compromising their structural integrity. Additionally, special steel often contains specific alloying elements like chromium, nickel, or molybdenum, which further enhance its formability. These alloying elements improve the steel's ability to be easily formed and manipulated, making it more ductile and minimizing the chances of cracking during the forming process. Furthermore, special steel can undergo heat treatment to modify its mechanical properties and enhance its formability. Annealing or quenching are some of the heat treatment processes that can make the steel more malleable, allowing for easy shaping and forming into desired products. In conclusion, special steel plays a critical role in enhancing product formability due to its exceptional strength, resistance to deformation, inclusion of alloying elements, and heat-treatability. These properties enable manufacturers to create products with intricate designs and complex shapes, fulfilling the diverse needs of various industries while ensuring durability and structural integrity.
- Q: How does special steel compare to other materials such as aluminum or titanium?
- Special steel, while not as lightweight as aluminum or titanium, offers exceptional strength, durability, and resistance to corrosion. It is often preferred in applications that require high tensile strength, such as construction and automotive industries. Additionally, special steel can be more cost-effective compared to aluminum or titanium, making it a popular choice for various manufacturing purposes.
Send your message to us
SAE AISI ASTM 42CrMo4/4140 Alloy Steel Bar
- Loading Port:
- China main port
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 30 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords