• Reinforcing Deformed Bar Grade BS4449:1997 System 1
  • Reinforcing Deformed Bar Grade BS4449:1997 System 2
  • Reinforcing Deformed Bar Grade BS4449:1997 System 3
  • Reinforcing Deformed Bar Grade BS4449:1997 System 4
  • Reinforcing Deformed Bar Grade BS4449:1997 System 5
  • Reinforcing Deformed Bar Grade BS4449:1997 System 6
Reinforcing Deformed Bar Grade BS4449:1997

Reinforcing Deformed Bar Grade BS4449:1997

Ref Price:
$280.00 - 320.00 / m.t. get latest price
Loading Port:
Tianjin
Payment Terms:
TT or LC
Min Order Qty:
50 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Deformed Steel
Shape:
Steel Round Bar

Reinforcing Deformed Bar Grade BS4449:1997

Details of Reinforcing Deformed Bar Grade BS4449:1997

Name

Deformed Bar

Shape

Round Bar

Standard

1.GB1499.2-2007, HRB335, HRB400E

2. ASTM A615 Gr.40, Gr.60

3.BS4449/1997

Diameter

6mm-50mm

Length

6m, 8m, 9m,12m as standard or as request

Test

SGS/UT 100% Elements Testing

Certificate:

ISO/Mill Certificate

Service:

24 hours online service /

more than 20 years trading and manufacture 

Quality Assurance:

the third party inspection, such as SGS, BV, TUV…etc. is acceptable

Packaging Details:

Seaworthy Packaging or as per customer's packing instruction

 

Specification of Reinforcing Deformed Bar Grade BS4449:1997

Standard

Grade

Yield Strength Mpa

Tensile Strength
Mpa

Elongation%

BS4449:1997

250

250

295

22

460A

460

485

12

460B

460

500

15

GB1499.2-2007

HRB335/335E

335

455

17

HRB400/400E

400

540

17

HRB500/500E

500

630

16

ASTM A615 & A615M-04a

GRADE40

280

420

12

GRADE60

420

620

9

GRADE75

520

690

7

JIS G3112-2004

SD295A

 ≥ 295

440-600

17

SD295B

295-390

≥ 440

17

SD345

345-440

≥490

19

SD390

390-510

 560

17

SD490

490-625

≥ 620

13

Size
(MM)

WEIGHT
(KG/M)

WEIGHT
(KG/PCS)

QUANTITY
(1TONS/PCS)

LENGTH 6M

LENGTH 12M

LENGTH 6M

LENGTH 12M

6

0.222

1.332

2.664

751

375

8

0.395

2.37

4.74

422

211

10

0.617

3.702

7.404

270

135

12

0.888

5.328

10.656

188

94

14

1.21

7.26

14.52

138

69

16

1.58

9.48

18.96

106

53

18

2

12

24

83

42

20

2.47

14.82

29.64

67

34

22

2.98

17.88

35.76

56

28

25

3.85

23.1

46.2

43

22

28

4.83

28.98

57.96

35

17

32

6.31

37.86

75.72

26

13

36

7.99

47.94

95.88

21

10

40

9.87

59.22

118.44

17

8

50

15.42

92.52

185.04

11

5

 

CNBM Introduction of Reinforcing Deformed Bar Grade BS4449:1997 Supplier

CNBM International Corporation is the most import and export platform of CNBM group(China National Building Material Group Corporation) ,which is a state-owned enterprise, ranked in 270th of Fortune Global 500 in 2015.

With its advantages, CNBM International are mainly concentrate on Cement, Glass, Iron and Steel, Ceramics industries and devotes herself for supplying high quality series of refractories as well as technical consultancies and logistics solution.

Reinforcing Deformed Bar Grade BS4449:1997

Reinforcing Deformed Bar Grade BS4449:1997

Packaging & Delivery of Reinforcing Deformed Bar Grade BS4449:1997

Packaging Detail

Sea worthy packing /as per customer's packing instruction

Delivery Detail

15 ~ 40 days after receiving the deposit

 

Products Show

Reinforcing Deformed Bar Grade BS4449:1997

FAQ:   

Are you a trading company or manufacturer?

Manufacturer

What’s the MOQ?

3 metric ton

What’s your delivery time? 

15-35 days after downpayment received

Do you Accept OEM service?

Yes

what’s your delivery terms?

FOB/CFR/CIF

What's the Payment Terms?

30% as deposit,70% before shipment by T/T

Western Union acceptable for small amount.

L/C acceptable for large amount.

Scrow ,Paybal,Alipay are also ok

Why  choose  us?

Chose happens because of quality, then price, We can give you both.

Additionally, we can also offer professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposals.

What's your available port of Shipment?

Main Port, China

What’s your featured  services?

Our service formula: good quality+ good price+ good service=customer's trust

 

Where are your Market?

Covering more than 160 countries in the world

 

Q: How is special steel used in the production of cutting blades?
Special steel is used in the production of cutting blades due to its exceptional hardness, durability, and resistance to wear. This type of steel is specifically designed to withstand the high levels of stress and heat generated during cutting processes. It allows the blades to retain their sharpness for a longer period, resulting in improved cutting performance and longer lifespan. Additionally, special steel can be tailored to meet specific requirements, such as corrosion resistance or high impact strength, making it a preferred choice for various cutting applications.
Q: How does special steel contribute to the transportation sector?
The transportation sector relies heavily on special steel due to the numerous benefits it offers. Special steel plays a pivotal role in improving the efficiency, safety, and overall performance of vehicles. One primary advantage is its high strength-to-weight ratio, which allows manufacturers to reduce vehicle weight without compromising structural integrity. As a result, fuel efficiency improves, emissions decrease, and operating costs are lowered. Furthermore, special steel exhibits exceptional resistance to corrosion, making it especially advantageous in areas with severe weather conditions or exposure to saltwater, such as coastal regions or winter roadways where salt is used for ice melting. This corrosion resistance helps extend the lifespan of transportation infrastructure, such as bridges, tunnels, and railways, thus minimizing maintenance and replacement expenses. Another important aspect is the outstanding impact resistance of special steel. It can withstand heavy impacts and collisions, making it ideal for constructing vehicle frames, body panels, and safety components. This enhances passenger safety and reduces the likelihood of severe injuries during accidents. Special steel also plays a crucial role in producing high-performance engines and powertrains. Steel alloys with specific characteristics, such as high temperature and wear resistance, are utilized in manufacturing critical engine components like pistons, crankshafts, and camshafts. This ensures long-lasting and efficient engine performance, resulting in improved reliability and reduced downtime. Moreover, special steel contributes to advancements in electric and hybrid vehicles. Certain steel alloys possess unique properties that enable the development of lightweight battery packs, electric motor components, and charging infrastructure. These advancements facilitate the shift towards greener transportation options and help decrease the environmental impact of the sector. Overall, special steel has a profound influence on the transportation sector by providing lightweight, durable, corrosion-resistant, and impact-resistant materials. It not only enhances the performance and safety of vehicles but also contributes to the establishment of sustainable and efficient transportation systems.
Q: What are the challenges in casting special steel?
One of the challenges in casting special steel is the high melting point of the material. Special steels often have a higher carbon content or alloying elements, which increases their melting point. This requires the use of specialized furnaces and techniques to reach and maintain the necessary temperature for casting. Additionally, special steels can be prone to defects such as porosity, inclusions, and segregation during the casting process. These defects can negatively impact the mechanical properties and overall quality of the steel, making it difficult to achieve the desired specifications. Therefore, strict control over the casting conditions, including temperature, mold design, and pouring techniques, is crucial to overcome these challenges and produce high-quality special steel castings.
Q: What are the limitations of using special steel in electrical applications?
There are several limitations to using special steel in electrical applications. Firstly, special steel can be more expensive compared to other materials commonly used in electrical applications, such as copper or aluminum. This can make it less cost-effective, especially for large-scale projects. Another limitation is that special steel has a relatively high electrical resistivity compared to copper or aluminum. This means that it is less efficient in conducting electricity, leading to higher energy losses and lower overall efficiency in electrical systems. This can be particularly important in applications where energy efficiency is a priority, such as in power generation or transmission. Additionally, special steel is generally less malleable and ductile compared to other materials like copper. This makes it less suitable for applications that require shaping or forming, as it can be more difficult to work with and may require more complex manufacturing processes. Furthermore, special steel is more prone to corrosion compared to materials like copper or aluminum. This can be a significant limitation in electrical applications, particularly in environments with high humidity or exposure to moisture. Corrosion can lead to degradation of the steel's electrical properties, reduce its lifespan, and increase maintenance and replacement costs. Lastly, special steel may not be as readily available or easily sourced as other materials commonly used in electrical applications. This can pose challenges in terms of availability, lead times, and potential supply chain disruptions, which may impact project timelines and overall productivity.
Q: Can special steel be used for making electronics components?
Yes, special steel can be used for making electronics components. Special steel refers to a type of steel that has been designed and manufactured to possess specific properties and characteristics that make it suitable for various applications, including electronics. In electronics manufacturing, special steel can be utilized for creating components such as connectors, springs, contacts, and other parts that require high strength, durability, and resistance to corrosion and wear. These properties are essential for ensuring the reliable performance and longevity of electronic devices. Additionally, special steel can also offer excellent thermal conductivity, electromagnetic shielding, and magnetic properties, which are crucial in certain electronic applications. For instance, in the production of transformers, special steel laminations are used to minimize energy loss and improve efficiency. Furthermore, special steel can be tailored to meet the specific requirements of different electronic components. For example, certain grades of stainless steel can be used for making components that need to withstand harsh environmental conditions or come into contact with corrosive substances. Overall, the use of special steel in electronics manufacturing provides an effective solution for producing components that can meet the demanding performance standards of modern electronic devices.
Q: How is special steel used in the medical supply chain?
Special steel is used in various ways within the medical supply chain. It is commonly utilized in the production of surgical instruments, implants, and medical devices due to its exceptional properties such as strength, durability, and corrosion resistance. Special steel is crucial in ensuring the quality and safety of these medical supplies, as it can withstand the demanding conditions of surgical procedures and sterilization processes. Additionally, special steel is used in the manufacturing of storage and transportation equipment for medical supplies, ensuring their proper handling and preservation. Overall, special steel plays a vital role in maintaining the integrity and reliability of medical supplies throughout the entire supply chain.
Q: How does special steel comply with international standards?
Special steel is a type of steel that is specifically designed and manufactured to possess exceptional properties and performance characteristics. When it comes to complying with international standards, special steel undergoes a rigorous process to ensure its quality and adherence to the established norms. Firstly, special steel production adheres to international standards through the selection of raw materials. The composition and quality of the raw materials used in the manufacturing process are carefully controlled and tested to meet the specifications outlined by international standards organizations. This ensures that the special steel produced is of the desired quality and possesses the required mechanical properties. Secondly, special steel manufacturers follow standardized production processes. These processes are designed in accordance with international guidelines and standards to guarantee consistency and traceability. Through the use of advanced technologies and quality control measures, special steel manufacturers can monitor and control every stage of production, from melting and casting to rolling and heat treatment. This ensures that the final product meets the required standards in terms of chemical composition, mechanical properties, and dimensional tolerances. Furthermore, special steel undergoes stringent testing and inspection procedures to validate its compliance with international standards. This includes various destructive and non-destructive testing methods such as ultrasonic testing, hardness testing, and microstructure analysis. These tests are conducted by certified laboratories and independent third-party agencies to ensure unbiased and accurate results. In addition, special steel manufacturers often have their production processes and quality management systems audited and certified by recognized bodies, such as ISO (International Organization for Standardization), to demonstrate their commitment to compliance with international standards. It is also worth mentioning that special steel manufacturers actively participate in international standardization committees, such as ASTM International and the International Organization for Standardization (ISO). By engaging in these committees, they can contribute to the development and revision of international standards, ensuring that their products remain up to date and in line with the latest industry requirements. In conclusion, special steel complies with international standards through careful selection of raw materials, adherence to standardized production processes, rigorous testing and inspection procedures, and active participation in international standardization committees. By following these measures, special steel manufacturers demonstrate their commitment to producing high-quality products that meet the stringent requirements of international standards.
Q: How does special steel perform in high-temperature oxidation conditions?
Special steel performs well in high-temperature oxidation conditions due to its exceptional resistance to oxidation and formation of protective oxide layers, which helps prevent corrosion and maintain its strength and integrity even at elevated temperatures.
Q: What are the limitations of special steel?
Some limitations of special steel include its high cost and limited availability, as well as the difficulty in shaping and processing it. Additionally, special steel may have lower tensile strength compared to other materials and can be prone to corrosion if not properly maintained.
Q: What are the specific requirements for special steel used in the oil and gas pipeline industry?
The specific requirements for special steel used in the oil and gas pipeline industry are dictated by the harsh operating conditions and the need for high performance and reliability. Some of the key requirements include: 1. Corrosion resistance: Special steel used in the oil and gas pipeline industry must possess excellent resistance to corrosion, as pipelines are exposed to various corrosive elements such as moisture, gases, and chemicals. This helps to prevent the degradation or failure of the pipeline due to corrosion. 2. High strength: The steel used in pipelines must have high tensile strength to withstand the high pressure and stress that it experiences during transportation of oil and gas. This ensures the pipeline's structural integrity and prevents leaks or bursts. 3. Toughness and impact resistance: The steel must be able to absorb energy and resist fracture when subjected to sudden impact or external forces. This is crucial for maintaining pipeline integrity and preventing accidents or ruptures. 4. Low temperature toughness: As pipelines often operate in cold environments, the steel must exhibit excellent low-temperature toughness to prevent brittle fracture. This ensures that the pipeline remains ductile and resistant to failure even at extremely low temperatures. 5. Weldability: Special steel used in pipelines should be easily weldable to facilitate the construction and repair of pipelines. Good weldability ensures strong and reliable joints that can withstand the stress and pressure during operation. 6. Resistance to hydrogen-induced cracking: Steel used in the oil and gas pipeline industry should have high resistance to hydrogen-induced cracking (HIC) and sulfide stress cracking (SSC). These types of cracks can occur when hydrogen or sulfide ions penetrate the steel, leading to catastrophic failure. Resistance to these types of cracking is crucial for pipeline safety. 7. Compliance with industry standards: Special steel used in the oil and gas pipeline industry must meet specific industry standards and regulations. These standards ensure that the steel meets the required mechanical properties, chemical composition, and manufacturing processes necessary for safe and reliable pipeline operation. Overall, the specific requirements for special steel used in the oil and gas pipeline industry are aimed at ensuring corrosion resistance, high strength, toughness, low-temperature performance, weldability, resistance to cracking, and compliance with industry standards. These requirements are essential for maintaining the integrity and safety of oil and gas pipelines.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords