• Grade 40Mn CNBM Hot Rolled Alloy Steel Round Bar System 1
  • Grade 40Mn CNBM Hot Rolled Alloy Steel Round Bar System 2
Grade 40Mn CNBM Hot Rolled Alloy Steel Round Bar

Grade 40Mn CNBM Hot Rolled Alloy Steel Round Bar

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT OR LC
Min Order Qty:
20 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Spring Steel
Shape:
Steel Round Bar

Specifications:

1. Commodity: Round steel bar 

2. Technical: Hot rolling

3. Length: Min. 5.8meter, according to requirement.

4.Diameter: 16mm-250mm 

Material

40Mn

Round bar

Dia(mm)

16-600

Process

EAF + LF + VD + Forged + Heat Treatment (optional)

Length (mm)   

Max 12000

Heat treatment

Normalized / Annealed / Quenched / tempered

Flat bar

Thickness(mm) 

8-500

Delivery condition

Hot forged +Rough machined (black surface after Q/T)+ Turned (optional)

Width(mm)

70-200

Test

Ultrasonic test according to SEP 1921-84 D/d

Length (mm)   

Max 12000

 

Chemical Composition:

C

Si

Mn

Cr

Ni

Cu

0.5~0.8

0.17~0.37

0.25~1.2

≤0.25

≤0.30

≤0.25

 

Usage and Applications:

Gear, Sleevesspool,Shaft, Crankshaft, Pin

 

Packaging & Delivery:

Packaging Detail: Standard seaworthy packing or as customer required; all goods are packed in bundle with steel strips and shipped by break bulk vessel or container

Delivery Detail: 15~45 days

 

Production Flow:

EAF+LF+VD+ Forged+ Heat Treatment

Material prepare (billet) — heat up — rough rolling — precision rolling — cooling — packing — storage and transportation

Grade 40Mn CNBM Hot Rolled Alloy Steel Round Bar

Grade 40Mn CNBM Hot Rolled Alloy Steel Round Bar

Quality Assurance:

1. We will strictly inspect our production that we sold according to the customer’s request.

2. Our steel reaches international quality standards.

3. Quality should be in conformity with the specification of the manufacturer. Quantity and packing conditions should be in conformity with the term in the contract.

4. Should the packing found damaged, the buyer has the right to claim to the seller

Q:How does special steel perform in terms of hardness?
Special steel is known to exhibit excellent hardness properties due to its unique composition and manufacturing processes. It is specifically designed to have a higher level of hardness compared to regular steel, making it extremely resistant to wear, abrasion, and deformation.
Q:What are the main elements in special steel alloys?
The composition of special steel alloys varies depending on the specific type of alloy and its intended use. However, there are several shared elements that are often found in these alloys. These elements include: 1. Iron (Fe): Iron is the primary component of steel alloys, providing the foundation for their strength and durability. 2. Carbon (C): Carbon plays a crucial role in steel alloys, greatly impacting their hardness and strength. Different carbon levels can result in varying properties, such as high carbon steel for increased hardness or low carbon steel for improved flexibility. 3. Chromium (Cr): Steel alloys are frequently enriched with chromium to enhance their resistance to corrosion. It forms a protective layer on the alloy's surface, preventing oxidation and rusting. 4. Nickel (Ni): Nickel is commonly incorporated into special steel alloys to enhance their heat and corrosion resistance. It also contributes to improving the material's strength and toughness. 5. Manganese (Mn): Manganese is often added to steel alloys to improve their workability and machinability. It also enhances their strength and impact resistance. 6. Molybdenum (Mo): Special steel alloys often contain molybdenum to increase their strength, hardness, and ability to withstand high temperatures. It also improves their resistance to corrosion. 7. Vanadium (V): Vanadium is frequently used in steel alloys to enhance their strength, toughness, and heat resistance. It also aids in refining the alloy's grain structure, resulting in improved performance. These are just a few examples of the common elements found in special steel alloys. Depending on specific requirements and desired properties, other elements like tungsten, cobalt, copper, and titanium may also be present in varying proportions. The combination of these elements allows for the creation of specialized steel alloys with unique properties tailored for specific applications in industries such as aerospace, automotive, construction, and manufacturing.
Q:What is the significance of tensile strength in special steel?
Tensile strength is of great significance in special steel because it determines the steel's ability to withstand stretching or pulling forces without breaking or deforming. This property is crucial in various industries, especially in manufacturing and construction, where high tensile strength is required for structural integrity and safety. Special steel with superior tensile strength can withstand heavy loads, resist impacts, and provide durability, making it highly sought after in applications such as building infrastructure, automotive manufacturing, and aerospace engineering.
Q:How does special steel contribute to reducing product rejection rates in quality control?
Special steel contributes to reducing product rejection rates in quality control by offering superior strength, durability, and corrosion resistance compared to conventional steel. This ensures that products made with special steel are less prone to defects, such as cracks, deformations, or surface imperfections, that could lead to rejection during quality control inspections. Additionally, special steel's precise composition and unique properties enable manufacturers to produce more accurate and consistent products, minimizing variations and deviations that could result in rejection.
Q:What are the common alloying elements in special steel?
Special steel commonly contains alloying elements such as chromium, nickel, molybdenum, and vanadium. The addition of chromium improves the steel's resistance to corrosion and increases its hardness. Nickel is utilized to enhance the steel's toughness and ability to withstand extreme temperatures. Molybdenum is frequently incorporated to strengthen the steel and improve its resistance to wear and corrosion. Vanadium, on the other hand, is recognized for its capability to increase the steel's hardness and strength, making it ideal for applications that necessitate high durability. These alloying elements are meticulously chosen and included in special steel to attain specific properties and fulfill the distinctive demands of various industries including automotive, aerospace, and construction.
Q:How does special steel perform in terms of corrosion resistance in marine environments?
Special steel, also known as stainless steel, performs exceptionally well in terms of corrosion resistance in marine environments. The high levels of chromium and nickel present in the alloy composition of special steel make it highly resistant to corrosion caused by saltwater and other corrosive elements present in marine environments. The chromium content in special steel forms a protective oxide layer on its surface known as the passive layer. This passive layer acts as a shield, preventing the steel from coming into direct contact with corrosive elements. It effectively blocks oxygen and moisture from reaching the underlying steel, thereby inhibiting corrosion. Additionally, the presence of nickel in special steel enhances its corrosion resistance even further. Nickel improves the stability of the passive layer and increases its ability to self-repair if it gets damaged. This property makes special steel highly reliable and long-lasting in marine environments, where exposure to saltwater, high humidity, and varying temperatures can accelerate corrosion processes. Furthermore, special steel offers excellent resistance to pitting corrosion and crevice corrosion, which are common types of corrosion encountered in marine environments. Pitting corrosion occurs when localized areas of the steel's surface are attacked, resulting in small pits or holes. Crevice corrosion occurs in confined spaces such as gaps or joints, where stagnant water or debris can accumulate and accelerate corrosion. Special steel's resistance to these types of corrosion ensures its durability and integrity in marine applications. Overall, special steel demonstrates outstanding corrosion resistance in marine environments due to its high chromium and nickel content. Its ability to form a protective passive layer, resist pitting and crevice corrosion, and self-repair makes it a preferred choice for various marine applications, including shipbuilding, offshore structures, and seawater desalination plants.
Q:How is spring steel used in the automotive industry?
Spring steel is commonly used in the automotive industry for various purposes. It is primarily utilized to manufacture suspension systems, such as coil springs, leaf springs, and stabilizer bars. The unique properties of spring steel, including its high strength, elasticity, and resistance to deformation, allow these components to effectively absorb shocks and provide a smoother ride. Additionally, spring steel is also employed in the production of engine valves, seat frames, and steering components due to its durability and ability to withstand high temperatures and stress.
Q:What are the applications of special steel in the oil and gas manufacturing process?
Special steel is widely used in the oil and gas manufacturing process for various applications. It is utilized in the construction of pipelines, offshore platforms, and equipment such as valves, pumps, and compressors. The high strength and corrosion resistance of special steel make it suitable for handling extreme conditions, such as high pressure and temperature environments, as well as corrosive substances like drilling fluids and sour gases. Additionally, special steel is employed in the fabrication of storage tanks and vessels, ensuring durability and preventing leakage or failure. Overall, the applications of special steel in the oil and gas industry contribute to enhanced safety, efficiency, and longevity of the manufacturing process.
Q:How does special steel perform in high-temperature fatigue?
Special steel is renowned for its outstanding performance in conditions of high-temperature fatigue. When exposed to elevated temperatures, special steel demonstrates qualities such as remarkable strength, exceptional resistance to creep, and superior thermal stability. These characteristics render it highly dependable and capable of enduring extended periods of exposure to extreme temperatures without significant deterioration in performance. One of the key factors contributing to special steel's exceptional performance in high-temperature fatigue is its distinct composition. Typically, it contains alloying elements like chromium, molybdenum, and vanadium, which enhance its strength at high temperatures and resistance to thermal fatigue. These alloying elements create stable carbides and nitrides that aid in preserving the material's structural integrity even under intense heat and cyclic loading. Furthermore, special steel undergoes specialized heat treatment procedures, such as quenching and tempering, to further enhance its properties in high-temperature fatigue. These treatments augment the material's microstructure, resulting in increased strength, toughness, and resistance to thermal fatigue. In conditions of high-temperature fatigue, special steel exhibits remarkable fatigue strength and durability, even when subjected to cyclic loading at elevated temperatures. Its high-temperature fatigue limit surpasses that of regular steel significantly, enabling it to withstand repetitive stress and strain without experiencing premature failure. This makes special steel an ideal choice for applications involving high-temperature environments, such as gas turbines, heat exchangers, and aerospace components. To conclude, special steel delivers exceptional performance in high-temperature fatigue conditions due to its unique composition, specialized heat treatment processes, and superior mechanical properties. Its high strength, resistance to creep, and thermal stability make it a reliable and long-lasting material for applications requiring prolonged exposure to extreme temperatures.
Q:How is special steel stored and transported?
Special steel is stored and transported with utmost care to ensure its quality and integrity are maintained. Firstly, during storage, special steel is kept in a controlled environment with appropriate temperature and humidity levels to prevent any corrosion or damage. It is often stored in covered warehouses or storage facilities specifically designed for steel, offering protection from environmental factors such as rain, snow, and sunlight. When it comes to transportation, special steel is transported using various methods depending on the quantity and distance. For short distances, smaller quantities can be transported by trucks equipped with flatbeds or enclosed trailers. These trucks are designed to securely hold and protect the steel during transit, preventing any shifting or damage. However, for longer distances or larger quantities, special steel is often transported via rail or sea. Rail transportation ensures a smooth and stable journey, reducing the risk of damage due to vibrations or sudden movements. Steel is loaded onto specially designed railcars that provide secure storage and protection during transit. Sea transportation involves loading the steel onto shipping containers or directly onto specialized vessels. Containers are sealed and secured to prevent any movement or damage during the journey. Specialized vessels, such as roll-on/roll-off ships or heavy-lift vessels, are used for transporting oversized or extremely heavy steel components. In all cases, special steel is carefully packaged and secured using appropriate materials, such as wooden crates, steel strapping, or plastic wrapping, to prevent any scratches or dents. Additionally, the transportation process is closely monitored, and any necessary precautions are taken to ensure the steel arrives at its destination in optimal condition. Overall, the storage and transportation of special steel require meticulous planning, proper handling, and the use of specialized equipment to safeguard its quality and protect it from any potential damage or degradation.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords