• PPGI Color Coated Coil Manufacturer System 1
  • PPGI Color Coated Coil Manufacturer System 2
  • PPGI Color Coated Coil Manufacturer System 3
  • PPGI Color Coated Coil Manufacturer System 4
  • PPGI Color Coated Coil Manufacturer System 5
  • PPGI Color Coated Coil Manufacturer System 6
PPGI Color Coated Coil Manufacturer

PPGI Color Coated Coil Manufacturer

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
100 m.t.
Supply Capability:
500000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Alloy Steel
Shape:
Steel Coil
Standard:
AISI,JIS,GB,BS,DIN,API,EN,ASTM
Thickness:
0.2 - 2.0MM
Technique:
Hot Rolled,Cold Rolled,Cold Drawn,ERW,Forged,Saw,Extruded,EFW,Spring
Shape:
Round
Surface Treatment:
Galvanized,Coated,Color Coated
Steel Grade:
Q195,Q215,Q235,Q215B,Q235B,RHB335,HRB400,200 Series,300 Series,400 Series,600 Series,SS400-SS490,10#,20#,A53(A,B)
Certification:
ISO,SGS,BV,IBR,RoHS,CE,API,BSI,UL
Length:
12m
Net Weight:
2MT

PPGI Color Coated Coil Manufacturer


Description of PPGI Color Coated Coil Manufacturer

Product

PPGI/PPGL

Capacity

5,000 tons/month

Base material

Hot dipped galvanized steel

Thickness

0.2-2.0mm

Width

600-1250mm(according to your need)

Coil Weight

3-6tons

Quality

SGCC, DX51D

Color

RAL No. or customers samples’ color

Zinc-coating

30g/m2-180g/m2

Coil ID

508mm/610mm

Technique

Cold rolled—hot dipped galvanized—color coated

Painting

Top painting:15~25μm

Back painting: 6~10μm

Tolerance

Thickness: +/-0.02mm

Width:+/-2mm

Shipment time

within 15-45 workdays

Payment

 T/T, L/C at sight 

Packing

Standard export packing

The special order can be negotiated.


Application of PPGI Color Coated Coil Manufacturer

APPLICATION OF OUR PREPAINTED STEEL

Construction

Outside

Workshop,agricultural   warehouse,residential precast unit

corrugated roof,roller   shutter door,rainwater drainage pipe,retailer booth

Inside

Door,doorcase,light   steel roof stucture,folding screen,elevator,stairway,ven gutter,Construction Wall

Electrical applicance 

Refrigerator,washer,switch   cabnet,instrument cabinet,air conditioning,micro-wave owen,bread maker

Fuiniture

Central   heating slice,lampshade,chifforobe,desk,bed,locker,bookself

Carrying trade

Exterior   decoration of auto and train,clapboard,container,isolation lairage,isolation   board

Qthers 

Writing   panel,garbagecan,billboard,timekeeper,typewriter,instrument panel,weight   sensor,photographic equipment


Products Show of PPGI Color Coated Coil Manufacturer

PPGI Coils from Tianjin Steel Material Mills

Product Advantages

1.With nearly 20 years   experience in prepainted steel, accommodate   different marketdemands.

2.'Quality first, service first' is our business   aim; 'The good faith get respect,cast quality market' is our Business philosophy . 

3.Having two series producttion line,with the abbual production capacity of 240000 tons.

4.Exceed International ISO9001:2008&ISO14001:2004 quality and environmental standards 

5.Meet with ROHS standard


Company Information

CNBM International Corporation is the most important trading platform of CNBM group.

Whith its advantages, CNBM International are mainly concentrate on Cement, Glass, Iron and Steel, Ceramics industries and devotes herself for supplying high qulity series of refractories as well as technical consultancies and logistics solutions.

Astm 615 Bs4449 B500B Deformed Steel RebarsAstm 615 Bs4449 B500B Deformed Steel Rebars 


F A Q

1, Your advantages?

     professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposale

2, Test & Certificate?

      SGS test is available, customer inspection before shipping is welcome, third party inspection is no problem

3,  Factory or Trading Company?

      CNBM is a trading company but we have so many protocol factories and CNBM works as a trading department of these factories. Also CNBM is the holding company of many factories.

4, Payment Terms?

    30% TT as deposit and 70% before delivery.

    Irrevocable L/C at sight.

5, Trading Terms?

    EXW, FOB, CIF, FFR, CNF

6, After-sale Service?

     CNBM provides the services and support you need for every step of our cooperation. We're the business partner you can trust.

     For any problem, please kindly contact us at any your convenient time.

We'll reply you in our first priority within 24 hours.

Q: How does special steel contribute to the telecommunications machinery industry?
Special steel plays a crucial role in the telecommunications machinery industry by providing the necessary materials for the production of high-quality and durable equipment. Telecommunications machinery, such as antennas, satellite dishes, and transmission towers, are exposed to various environmental conditions and need to withstand extreme weather, corrosion, and mechanical stress. Special steel, known for its exceptional strength, toughness, and resistance to corrosion, provides the necessary properties to ensure the longevity and reliability of telecommunications equipment. For instance, antennas and satellite dishes made from special steel can withstand strong winds and harsh weather conditions without compromising signal quality or structural integrity. Moreover, special steel is used in the production of transmission towers, which are vital for the efficient transmission of signals across long distances. These towers need to support heavy equipment, withstand dynamic loads, and resist corrosion to maintain uninterrupted communication. Special steel, with its high tensile strength and corrosion resistance, ensures the stability and longevity of transmission towers, contributing to the overall reliability of the telecommunications network. Additionally, special steel is utilized in the manufacturing of cables and connectors used in telecommunications systems. These components require high conductivity, low resistance, and resistance to wear and tear. By using special steel, telecommunications machinery manufacturers can ensure efficient signal transmission and reduce signal loss, leading to improved communication quality. In summary, special steel is essential to the telecommunications machinery industry as it provides the necessary materials with superior strength, durability, and resistance to corrosion. By using special steel in the production of antennas, satellite dishes, transmission towers, cables, and connectors, the industry can deliver reliable and high-quality telecommunications equipment to meet the growing demands of the modern world.
Q: What are the main characteristics of heat-resistant steel forgings?
Heat-resistant steel forgings have several main characteristics that make them suitable for high-temperature applications. Firstly, they have excellent resistance to oxidation and corrosion, which allows them to maintain their mechanical properties even at elevated temperatures. This resistance is achieved through the addition of alloying elements such as chromium, nickel, and molybdenum, which form a protective oxide layer on the surface of the steel. Secondly, heat-resistant steel forgings exhibit high strength and toughness at high temperatures. This is crucial in applications where the material is subjected to mechanical stress and thermal cycling, such as in gas turbines, power plants, and aerospace engines. The combination of high strength and toughness ensures that the forgings can withstand the harsh operating conditions without deformation or failure. Another important characteristic of heat-resistant steel forgings is their ability to retain their hardness and dimensional stability even after prolonged exposure to high temperatures. This is achieved through a combination of careful alloying and heat treatment processes, which optimize the microstructure of the steel. The resulting material has a fine grain structure and a high degree of uniformity, which enhances its resistance to thermal fatigue and creep. Furthermore, heat-resistant steel forgings have good thermal conductivity, which allows for efficient heat transfer and dissipation. This is particularly important in applications where heat is generated and needs to be managed effectively to prevent overheating and damage to surrounding components. Lastly, heat-resistant steel forgings can be easily machined and fabricated into complex shapes, making them versatile and suitable for a wide range of applications. They can be forged, machined, and welded without any significant loss in their mechanical properties, making them ideal for manufacturing components with intricate designs and high precision requirements. In conclusion, the main characteristics of heat-resistant steel forgings include excellent resistance to oxidation and corrosion, high strength and toughness at high temperatures, dimensional stability and hardness retention, good thermal conductivity, and ease of machining and fabrication. These characteristics make heat-resistant steel forgings essential in industries that require reliable and durable materials in extreme heat conditions.
Q: How does special steel perform in terms of corrosion resistance in marine environments?
In marine environments, special steel, also known as stainless steel, exhibits exceptional performance in terms of resisting corrosion. This is mainly attributed to the high levels of chromium and nickel present in its alloy composition. The chromium content creates a protective oxide layer on the steel's surface, commonly referred to as the passive layer. Acting as a shield, this layer prevents direct contact between the steel and corrosive elements found in marine environments, such as saltwater. Furthermore, the presence of nickel enhances the corrosion resistance of special steel. Nickel not only improves the stability of the passive layer but also increases its ability to self-repair if it becomes damaged. This property makes special steel highly reliable and long-lasting, especially in marine environments where the steel is exposed to saltwater, high humidity, and fluctuating temperatures that can accelerate corrosion processes. Moreover, special steel offers excellent resistance to two common types of corrosion encountered in marine environments: pitting corrosion and crevice corrosion. Pitting corrosion occurs when localized areas of the steel's surface are attacked, resulting in small pits or holes. Crevice corrosion, on the other hand, takes place in confined spaces such as gaps or joints, where stagnant water or debris can accumulate and expedite corrosion. By effectively resisting these types of corrosion, special steel ensures its durability and integrity in marine applications. Overall, the high chromium and nickel content of special steel contribute to its outstanding corrosion resistance in marine environments. Its ability to form a protective passive layer, resist pitting and crevice corrosion, and self-repair makes it the preferred choice for various marine applications, including shipbuilding, offshore structures, and seawater desalination plants.
Q: How does special steel perform in high-impact applications?
Special steel is specifically designed to excel in high-impact applications. It is engineered with unique properties that enable it to withstand extreme forces and impacts without deforming or breaking. One of the key features of special steel is its high strength and hardness, which allows it to absorb and distribute impact forces effectively. This helps prevent the material from shattering or deforming under heavy loads, making it ideal for applications such as construction machinery, automotive parts, and industrial equipment. Moreover, special steel also exhibits excellent toughness, which means it can resist cracking or fracturing when subjected to sudden and intense impacts. This is crucial in high-impact applications where the material needs to endure repeated forces without failure. The toughness of special steel is achieved through careful alloying and heat treatment processes, which enhance its ability to absorb energy and resist fracture. In addition, special steel often possesses superior wear resistance, corrosion resistance, and heat resistance properties, which contribute to its overall performance in high-impact applications. These enhanced features enable the material to maintain its integrity and functionality even when exposed to harsh environments or extreme temperatures. Overall, special steel demonstrates exceptional performance in high-impact applications due to its high strength, toughness, wear resistance, corrosion resistance, and heat resistance. These properties make it a reliable and durable choice for industries that require materials capable of withstanding intense forces and impacts.
Q: How is special steel used in the production of gears?
Special steel is used in the production of gears due to its high strength, durability, and resistance to wear and fatigue. It provides the necessary toughness and hardness required to withstand the stresses and loads that gears experience during operation. Additionally, special steel can be heat treated to enhance its properties, ensuring precise dimensions and improving the overall performance and lifespan of gears.
Q: How does special steel perform in medical applications?
Special steel, also known as stainless steel, has proven to be a highly versatile and reliable material for various medical applications. Its unique properties make it an ideal choice for medical instruments, devices, and equipment. First and foremost, special steel is highly resistant to corrosion, which is crucial in medical settings where sterilization and frequent exposure to moisture are common. This resistance to corrosion ensures that the steel remains durable and does not degrade over time, making it suitable for long-term use. Additionally, special steel is biocompatible, meaning it does not cause any adverse reactions when in contact with living tissues or bodily fluids. This biocompatibility is essential for medical implants such as prosthetics, orthopedic screws, and dental implants, as it minimizes the risk of rejection or infection. Moreover, special steel offers excellent strength and hardness, allowing it to withstand the demanding conditions of medical procedures. It can maintain its structural integrity even under extreme temperatures or high-pressure environments, making it suitable for surgical instruments and cutting tools. Its hardness also enables sharp and precise cutting edges, ensuring accurate and effective surgical procedures. Furthermore, special steel is easy to clean and sterilize due to its smooth surface finish. This is crucial in medical applications where maintaining a sterile environment is of utmost importance to prevent the spread of infections. The smooth surface also prevents the accumulation of bacteria or other contaminants, reducing the risk of contamination. In conclusion, special steel has proven to be a highly reliable and versatile material for medical applications. Its corrosion resistance, biocompatibility, strength, and ease of sterilization make it ideal for medical instruments, devices, and implants. The exceptional performance of special steel in medical applications contributes to improving patient care, ensuring safety, and enhancing the overall effectiveness of medical procedures.
Q: What is the impact of impurities on the machinability of special steel?
Impurities can have a significant impact on the machinability of special steel. These impurities can cause variations in the material's hardness, toughness, and other mechanical properties, making it more difficult to machine. They can also lead to increased tool wear and reduced cutting speeds, resulting in lower productivity and increased production costs. Therefore, it is crucial to minimize impurities during the manufacturing process to ensure optimal machinability of special steel.
Q: What is the role of heat treatment in special steel?
Heat treatment plays a crucial role in enhancing the properties and performance of special steel. Special steel refers to alloys that are specifically designed to have unique characteristics, such as high strength, corrosion resistance, or heat resistance. Heat treatment involves subjecting the steel to controlled heating and cooling processes to alter its microstructure, resulting in desired properties. One of the key roles of heat treatment in special steel is to improve its mechanical properties. By carefully controlling the heating temperature and cooling rate, the steel's hardness, strength, and toughness can be enhanced. For example, through processes like quenching and tempering, special steel can be made significantly stronger and more resistant to wear and fatigue. This makes it suitable for applications where high strength and durability are required, such as in the construction of machinery, tools, or aerospace components. Heat treatment also helps to optimize the steel's resistance to corrosion. Special steel is often used in environments where it is exposed to harsh conditions, such as corrosive chemicals or high temperatures. By subjecting the steel to specific heat treatment processes, like annealing or precipitation hardening, the steel can develop a more stable microstructure that improves its resistance to corrosion and oxidation. This ensures that the special steel maintains its integrity and performance even in challenging environments. Furthermore, heat treatment can modify the steel's heat resistance properties. Special steel is frequently used in applications where it is exposed to high temperatures, such as in the manufacturing of turbines or exhaust systems. Through heat treatment techniques like normalization or hardening, the steel can be made more resistant to deformation, cracking, or softening at elevated temperatures. This enables the special steel to retain its strength and structural integrity even under extreme heat conditions. In summary, heat treatment plays a crucial role in optimizing the mechanical, corrosion resistance, and heat resistance properties of special steel. By carefully manipulating the steel's microstructure through controlled heating and cooling processes, heat treatment enhances the steel's strength, durability, and performance, making it suitable for a wide range of demanding applications.
Q: What are the different surface treatments used for special steel?
There are several different surface treatments that can be used for special steel, depending on the specific requirements and desired properties. Some of the commonly used surface treatments for special steel include: 1. Nitriding: This process involves diffusing nitrogen into the surface of the steel, resulting in a hardened layer. Nitriding improves the surface hardness, wear resistance, and fatigue strength of the steel. 2. Carburizing: Carburizing involves introducing carbon into the surface of the steel, forming a hard and wear-resistant layer. This process enhances the surface hardness and improves the steel's resistance to wear and fatigue. 3. Coating: Coating is a popular surface treatment technique where a thin layer of protective material is applied to the steel surface. Coatings can include various materials like zinc, chrome, or ceramic, which provide corrosion resistance, improved aesthetics, and enhanced durability. 4. Shot peening: Shot peening is a mechanical surface treatment technique that involves bombarding the steel surface with small metallic or ceramic particles. This process induces compressive stresses in the material, enhancing its fatigue strength and resistance to cracking. 5. Electroplating: Electroplating is a process where a thin layer of metal is deposited onto the steel surface using an electrical current. This treatment provides improved corrosion resistance and can also enhance the appearance of the steel. 6. Passivation: Passivation involves treating the steel surface with a chemical solution to remove impurities and create a protective oxide layer. This process improves the corrosion resistance and enhances the surface finish of the steel. 7. Anodizing: Anodizing is a surface treatment commonly used for aluminum but can also be applied to special steel. It involves creating an oxide layer on the steel surface through an electrolytic process. Anodizing improves corrosion resistance, provides an aesthetic finish, and can also be used for coloring the steel. These different surface treatments offer various benefits and are chosen based on the specific application requirements, such as corrosion resistance, wear resistance, hardness, aesthetics, or improved mechanical properties.
Q: How does special steel contribute to reducing product downtime due to repairs?
Special steel contributes to reducing product downtime due to repairs by providing enhanced durability and resistance to wear and tear. Its unique composition and properties enable it to withstand harsh conditions, such as high temperatures, corrosion, and mechanical stress. This reduces the frequency of repairs and maintenance required for products, resulting in less downtime. Additionally, special steel's high strength and toughness allow for the design of more reliable components, ensuring longer operational life and minimizing the need for frequent repairs.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords