• Solar Inverter Adelaide - Off Grid MPPT Solar Inverter, Solar Pump Inverter 380V 2.2KW 4KW 5.5KW System 1
  • Solar Inverter Adelaide - Off Grid MPPT Solar Inverter, Solar Pump Inverter 380V 2.2KW 4KW 5.5KW System 2
  • Solar Inverter Adelaide - Off Grid MPPT Solar Inverter, Solar Pump Inverter 380V 2.2KW 4KW 5.5KW System 3
Solar Inverter Adelaide - Off Grid MPPT Solar Inverter, Solar Pump Inverter 380V 2.2KW 4KW 5.5KW

Solar Inverter Adelaide - Off Grid MPPT Solar Inverter, Solar Pump Inverter 380V 2.2KW 4KW 5.5KW

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT or LC
Min Order Qty:
150000 watt
Supply Capability:
3000000 watt/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 

1.       Structure of Off Grid MPPT Solar Inverter, Solar Pump Inverter 380v 2.2kw 4kw 5.5kw Description

A solar inverter, or PV inverter, or Solar converter, converts the variable direct current (DC) output of a photovoltaic (PV) solar panel into a

utility frequency alternating current (AC) that can be fed into a commercial electrical grid or used by a local, off-grid electrical network. It is

 a critical BOS–component in a photovoltaic system, allowing the use of ordinary AC-powered equipment. Solar inverters have special

functions adapted for use with photovoltaic arrays, including maximum power point tracking and anti-islanding protection.

 

2.       Main Features of the Off Grid MPPT Solar Inverter, Solar Pump Inverter 380v 2.2kw 4kw 5.5kw

﹒ Supports AC&DC input:

DC solar panel input. And If no good sunshine, can use grid  AC regular input work the pumps.

﹒Dry protection :

If no water in the ground, the water pump will stop working automaticly and when the water comes, starts to working automaticly.

﹒Automatic working:

When the sunshine not good then pumps slow down automatically and when sun become good then go on working.

﹒Save cost/directly connect solar panel:

Solar panle connects solar inverter directly and to the pump. Also can control the water level in the tank. No enough water in the tank

working fast, enough water will stop working automaticly. (how many water you need, you can set the parameters)

﹒Speed & frequency control, No need battery:

 

3.  Off Grid MPPT Solar Inverter, Solar Pump Inverter 380v 2.2kw 4kw 5.5kw Images

 

 

      Solar inverter

 

4.  Off Grid MPPT Solar Inverter, Solar Pump Inverter 380v 2.2kw 4kw 5.5kw Specification 

Inverter Model

Input voltage

Rated output power (kW)

Rated output current (A)

PI9100-S 0R4G1

Single phase AC 220V ± 10%;

 

DC 220-380V

     

0.4

2.5

PI9100-S 0R7G1

0.75

4

PI9100-S 1R5G1

1.5

7

PI9100-S 2R2G1

2.2

10

PI9100-S 004G1

4.0

16

PI9200-S 5R5G1

5.5

25

PI9100-S 0R4G2

3 phase AC 220V ± 10%;

 

DC 220-380V

        

0.4

2.5

PI9100-S 0R7G2

0.75

4

PI9100-S 1R5G2

1.5

7

PI9100-S 2R2G2

2.2

10

PI9100-S 004G2

4.0

16

PI9200-S 5R5G2

5.5

25

PI9200-S 7R5G2

7.5

32

PI9200-S 011G2

11

45

PI9200-S 015G2

15.0

60

PI9100-S 0R7G3

3 phase AC 380V ± 10%;

 

DC 350-750V

       

0.75

2.5

PI9100-S 1R5G3

1.5

3.8

PI9100-S 2R2G3

2.2

5.1

PI9100-S 004G3

4.0

9

PI9100-S 5R5G3

5.5

13

PI9100-S 7R5G3

7.5

17

PI9230-S 011G3

11

25

PI9230-S 015G3

15

32

 

5.   FAQ of Off Grid MPPT Solar Inverter, Solar Pump Inverter 380v 2.2kw 4kw 5.5kw

Q1. What is the difference between inverter and solar inverter?

A1. Inverter only has AC inpput, but solar inverter both connect to AC input and solar panel, it saves more power.

 

Q2. What is the difference between MPPT&PWM?

A2. MPPT has higher efficiency, it can track the max power point and won't waste energy.

 

Q3. What is the waranty of product?

A3. 12 months.

 

Q: How does a solar inverter impact the payback period of a solar system?
A solar inverter plays a crucial role in converting the direct current (DC) electricity generated by solar panels into usable alternating current (AC) electricity for household or grid consumption. The efficiency and performance of the solar inverter directly impact the overall energy production of the solar system. A higher quality and more efficient solar inverter can maximize the electricity generation, reducing the payback period of the solar system. Conversely, a low-quality or inefficient solar inverter may result in lower energy output, potentially extending the payback period of the solar system.
Q: Can a solar inverter be used in areas with high levels of electromagnetic interference (EMI)?
Yes, a solar inverter can be used in areas with high levels of electromagnetic interference (EMI) as long as the inverter is designed and tested to withstand such conditions. Inverters with robust shielding and advanced filtering mechanisms can effectively mitigate the effects of EMI, ensuring stable and reliable operation even in challenging electromagnetic environments.
Q: How does a solar inverter affect the overall aesthetics of a solar installation?
A solar inverter does not have a significant impact on the overall aesthetics of a solar installation. Inverters are typically mounted in discreet locations, such as on the side of a building or inside a garage, where they are not visible from the street or prominent areas. Therefore, the inverter's presence does not greatly affect the visual appeal of the solar system.
Q: Can a solar inverter be used in a net metering system?
Yes, a solar inverter can be used in a net metering system. A solar inverter is an essential component of a net metering system as it converts the direct current (DC) produced by the solar panels into alternating current (AC) that can be used to power homes or businesses. It also allows for any excess electricity generated to be fed back into the grid, earning credits or reducing the electricity bill through the net metering arrangement.
Q: What is the importance of insulation resistance measurement in a solar inverter?
Insulation resistance measurement in a solar inverter is crucial as it helps ensure the safety and efficiency of the electrical system. By measuring the insulation resistance, any potential faults or deteriorations in the insulation can be detected, preventing electrical leakage or short circuits. This measurement also helps identify any insulation breakdowns that may compromise the performance and reliability of the solar inverter. Ultimately, insulation resistance measurement is essential for maintaining the integrity of the solar inverter and ensuring the safety of both the electrical system and the people using it.
Q: Can a solar inverter be used with a solar-powered CCTV system?
Yes, a solar inverter can be used with a solar-powered CCTV system. A solar inverter is responsible for converting the direct current (DC) produced by solar panels into alternating current (AC) that is used to power electrical devices. In the case of a solar-powered CCTV system, the solar panels generate DC electricity, which is then fed into the solar inverter to convert it into AC power, enabling it to operate the CCTV cameras and other necessary equipment.
Q: How does a solar inverter impact the overall system reliability?
A solar inverter plays a crucial role in ensuring the overall system reliability of a solar power system. It converts the direct current (DC) generated by solar panels into alternating current (AC) that is suitable for use in homes or businesses. By efficiently converting the energy and maintaining optimal voltage and frequency levels, the inverter ensures that the system operates reliably and consistently. It also provides various protective functions, such as monitoring and controlling the system's performance, detecting faults or abnormalities, and shutting down the system in case of emergencies. Therefore, a well-functioning solar inverter significantly impacts the overall system reliability by maximizing energy production, preventing damage, and ensuring smooth operation.
Q: How do you size a solar inverter for a solar power system?
To size a solar inverter for a solar power system, you need to consider the maximum power output of your solar panels. Calculate the total wattage of your solar panels and choose an inverter with a capacity slightly larger than that. It is important to ensure that the inverter's capacity can handle the maximum power output of your solar panels to avoid any performance issues or damage to the system.
Q: Can a solar inverter be used in low light conditions?
Yes, solar inverters can still be used in low light conditions. However, the efficiency of the solar inverter may be reduced as it relies on sunlight to convert solar energy into usable electricity.
Q: In a photovoltaic grid-connected project, the role of the inverter is to convert the voltage into AC 220V or 380V for the grid, since the transformer will raise the voltage again
Spontaneous use is a way of grid, that is issued to the electricity, mainly their own family or internal use, the excess part of the power to the grid

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords