• 300kw Solar Inverter 2kw On-grid Inverter with Energy Storage 1kw/2kw/3kw Hybrid Inverter System 1
  • 300kw Solar Inverter 2kw On-grid Inverter with Energy Storage 1kw/2kw/3kw Hybrid Inverter System 2
300kw Solar Inverter 2kw On-grid Inverter with Energy Storage 1kw/2kw/3kw Hybrid Inverter

300kw Solar Inverter 2kw On-grid Inverter with Energy Storage 1kw/2kw/3kw Hybrid Inverter

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT OR LC
Min Order Qty:
1000 watt
Supply Capability:
100000 watt/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

 

Introduction

On-grid Inverter with Energy Storage 2kW/3kW hybrid inverter

Pure sine wave output

Microprocessor controlled to guarantee stable charging system

Multiple operations: Grid tie, Off grid, and grid tie with backup

Built-in MPPT solar charger

LCD display panel for comprehensive information

Multiple communication

Green substitution for generators

User adjustable charging current up to 25A

 

Features

Feed-in is not only choice

In comparison with conventional grid-tie inverter, CNBM-H is able to not only feed-in power to

grid but also store solar power to battery for future usage and directly power to the loads.

Save money by discharging battery for self-consumption first

CNBM-H can save money by using battery energy first when PV energy is low. Until battery

energy is low, CNBM will extract AC power from the grid.

Power backup when AC failed

CNBM-H can operate as an off-grid inverter to provide continuous power even without the grid.

It’s perfect power solution for remote regions or temporary AC power source such as camping or flea market.

 

 

 

 

Images

 

2KW On-grid Inverter with Energy Storage 1KW/2kW/3kW hybrid inverter

2KW On-grid Inverter with Energy Storage 1KW/2kW/3kW hybrid inverter

2KW On-grid Inverter with Energy Storage 1KW/2kW/3kW hybrid inverter

2KW On-grid Inverter with Energy Storage 1KW/2kW/3kW hybrid inverter

 

Sepecification

 

 

2KW On-grid Inverter with Energy Storage 1KW/2kW/3kW hybrid inverter

2KW On-grid Inverter with Energy Storage 1KW/2kW/3kW hybrid inverter

2KW On-grid Inverter with Energy Storage 1KW/2kW/3kW hybrid inverter

FAQ

Q1: How to choose a right inverter?

A1:Tell us your demand, then our sales will recommend a suitable inverter to you. 

Q2: What's the different between inverter and solar inverter?

A2:  Inverter is only accept AC input, but solar inverter not only accept AC input but also can connect with solar panel to accept PV input, it more save power.  

 

Q3: How about the delivery time?

A3:  7 days for sample; 25 days for bulk order.

Q4: What is the warranty of inverter?

A4: 5/10 years warranty on CNBM-Solar product.

 

Q5: How to solve the technical problem?

A5: 24 hours after-service consultancy just for you and to make your problem to solve easily.

 

 

Q: How does a solar inverter affect the overall system cost?
A solar inverter affects the overall system cost by adding to the initial investment required for installing a solar power system. Inverters are an essential component in converting the DC electricity produced by solar panels into usable AC electricity for our homes or businesses. The cost of a solar inverter depends on its capacity, brand, and features. While inverters do add to the overall system cost, they are crucial for efficient energy production and can enhance the system's performance and longevity.
Q: How does the input current rating affect the performance of a solar inverter?
The input current rating of a solar inverter directly affects its performance as it determines the maximum amount of current that can be supplied to the inverter. If the input current rating is too low, the inverter may not be able to handle the power generated by the solar panels efficiently, resulting in reduced performance. Conversely, if the input current rating is high, the inverter can handle a larger amount of power and perform optimally. Therefore, selecting an inverter with an appropriate input current rating is crucial for ensuring smooth and efficient operation of a solar power system.
Q: Can a solar inverter be used with different types of grounding configurations?
Yes, a solar inverter can be used with different types of grounding configurations. Solar inverters are typically designed to be compatible with various grounding systems, including grounded, ungrounded, or floating configurations. However, it is important to consult the manufacturer's specifications and guidelines to ensure proper installation and operation in accordance with the specific grounding requirements.
Q: What is the role of a frequency regulation feature in a solar inverter?
The role of a frequency regulation feature in a solar inverter is to maintain a stable and consistent frequency of the electrical output, ensuring compatibility with the grid or connected appliances. This feature helps to mitigate fluctuations in frequency caused by varying solar irradiance or load fluctuations, thereby improving the overall efficiency and reliability of the solar power system.
Q: Are there any safety concerns associated with solar inverters?
Yes, there are some safety concerns associated with solar inverters. One of the main concerns is the risk of electrical shock or fire due to faulty installation or maintenance. Additionally, there can be potential hazards from exposure to high voltage DC electricity during installation or repairs. It is important to follow proper installation procedures and adhere to safety guidelines to mitigate these risks.
Q: How does a solar inverter protect against overvoltage or overcurrent?
A solar inverter protects against overvoltage or overcurrent by continuously monitoring the voltage and current levels of the solar panels. If it detects an excessive voltage or current, it automatically disconnects the panels from the grid to prevent any damage. Additionally, the inverter may also have built-in protective devices like surge suppressors or fuses to further safeguard against overvoltage or overcurrent situations.
Q: How does a solar inverter impact the overall system reliability?
A solar inverter plays a crucial role in the overall system reliability of a solar power system. It converts the direct current (DC) generated by solar panels into alternating current (AC) that can be used to power homes and businesses. By efficiently managing the power output and ensuring proper voltage levels, a solar inverter helps maintain the stability and reliability of the system. It also includes protective features that safeguard the system from potential issues like overvoltage, overcurrent, and short circuits. Therefore, a high-quality solar inverter positively impacts the overall system reliability by ensuring optimal performance and protecting against potential faults or failures.
Q: Can a solar inverter be used with solar-powered remote sensing systems?
Yes, a solar inverter can be used with solar-powered remote sensing systems. A solar inverter is responsible for converting the direct current (DC) generated by solar panels into alternating current (AC) that can be used to power various devices and systems. In the case of solar-powered remote sensing systems, the solar inverter would be an essential component in converting the DC power from the solar panels into the required AC power to operate the remote sensing equipment.
Q: How much maintenance is required for a solar inverter?
Solar inverters require regular maintenance to ensure optimal performance and longevity. The frequency and level of maintenance may vary depending on the specific make and model of the inverter, as well as environmental factors. Generally, maintenance tasks include regular cleaning to remove dust and debris, checking and tightening electrical connections, inspecting for any signs of wear or damage, and updating software or firmware as needed. It is recommended to follow the manufacturer's guidelines and have a professional solar technician perform periodic maintenance to maximize the efficiency and reliability of the solar inverter.
Q: How do you maintain a solar inverter?
To maintain a solar inverter, regular cleaning of dust and debris is essential to ensure efficient operation. Additionally, monitoring the inverter's performance and checking for any abnormal readings or error messages is important. It is also recommended to inspect the wiring connections for any loose or damaged parts and to keep the inverter's ventilation system clear from obstructions. Regular servicing by a professional technician is recommended to identify and address any potential issues before they become major problems.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords