• Solar On-Grid Inverter 5kw 2MPPTs 5000TL System 1
  • Solar On-Grid Inverter 5kw 2MPPTs 5000TL System 2
  • Solar On-Grid Inverter 5kw 2MPPTs 5000TL System 3
Solar On-Grid Inverter 5kw 2MPPTs 5000TL

Solar On-Grid Inverter 5kw 2MPPTs 5000TL

Ref Price:
get latest price
Loading Port:
Qingdao
Payment Terms:
TT OR LC
Min Order Qty:
50000 watt
Supply Capability:
3000000 watt/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

1.   Structure of Solar On-grid Inverter 5kw 2MPPTs 5000TL Description

A solar inverter, or PV inverter, or Solar converter, converts the variable direct current (DC) output of a photovoltaic (PV) solar panel into a utility frequency alternating current (AC) that can be fed into a commercial electrical grid or used by a local, off-grid electrical network. It is a critical BOS–component in a photovoltaic system, allowing the use of ordinary AC-powered equipment. Solar inverters have special functions adapted for use with photovoltaic arrays, including maximum power point tracking and anti-islanding protection.

 

2.   Main Features of the Solar On-grid Inverter 5kw 2MPPTs 5000TL

﹒2 MPPT channels, new generation technology

Two high speed MPPT for real time power tracking and improved energy harvesting

High frequency transformer operation for highest efficiency: 97.4% (97.0% Euro)

Certified grid connected operation according to the international standards

True Sine Wave Output        

Integrated RS-485/RS-232 serial communication

Multi-language display

2 MPPT channels can be independent or parallel, auto detecting operation

 

3. Solar On-grid Inverter 5kw 2MPPTs 5000TL Images

 

Solar On-Grid Inverter 5kw 2MPPTs 5000TL

Solar On-Grid Inverter 5kw 2MPPTs 5000TL

Solar On-Grid Inverter 5kw 2MPPTs 5000TL

Solar On-Grid Inverter 5kw 2MPPTs 5000TL


 

4. Solar On-grid Inverter 5kw 2MPPTs 5000TL Specification

CHARACTERISTICS

Suntwins 5000TL 

Input Data(DC side)

Max. DC power(Total)

5300W

Max.DC power per MPPT

3000W

Max. DC voltage

500Vdc

MPPT Operating range

100~450Vdc

Number of parallel inputs

2

Number of MPPT trackers

2

Max. input current per MPPT

IN1:15A/IN2:15A

Output Data(AC side)

Nominal output power

4950W

Max. Output power

4950W

Nominal output current

21.5A

Max. output current

25A

Nominal AC voltage

230Vac

AC voltage range *

190~265Vac

Nominal AC grid frequency

50Hz

AC grid frequency range*

50 ± 5 Hz

Power factor(cos φ)

>0.99

Harmonic distortion(THDI)

<3%(at nominal output power)

Efficiency

Max. efficiency

97.4%

Euro efficiency

97.0%

MPPT efficiency

99.6%

Genaral data

Dimensions (W / D / H)

345*152*435mm

Net weight

18Kg

Operating temperature range

–25 °C ~ +60 °C

Noise emission (typical)

≤ 25 dB(A)

Power consumption at night

0 W

Electrical isolation

No

Cooling concept

Natural cooling

IP Code

IP65

Communication

RS-232(RS485 is optional)

 

 

5.  FAQ of Solar On-grid Inverter 5kw 2MPPTs 5000TL

Q1. What is the difference between inverter and solar inverter?
A1. Inverter only has AC inpput, but solar inverter both connect to AC input and solar panel, it saves more power.

 

Q2. What is the difference between MPPT&PWM?
A2. MPPT has higher efficiency, it can track the max power point and won't waste energy.

 

Q3. What is the waranty of product?
A3. 12 months.


Q:Photovoltaic grid-connected inverter problem
Hello, the definition of the zero line is not caused by the transformer three-phase electric tail connection? I now do not understand why there is no isolation transformer AC output marked is N (zero line), and it is not the transformer three-phase power of the tail connection leads to, this is the zero line? The The
Q:How does a solar inverter handle grid synchronization during startup?
During startup, a solar inverter handles grid synchronization by employing a process called anti-islanding. The inverter continuously monitors the grid voltage and frequency to ensure that it matches the required standards. It remains disconnected from the grid until it detects stable and synchronized grid conditions. Once the grid parameters are within the acceptable range, the inverter synchronizes its output waveform with the grid and gradually ramps up its power production. This ensures a smooth and safe integration of the solar system with the grid, preventing any potential issues like islanding or instability.
Q:Can a solar inverter be used with solar-powered greenhouse systems?
Yes, a solar inverter can be used with solar-powered greenhouse systems. A solar inverter is responsible for converting the DC power produced by solar panels into AC power that can be used to run electrical devices. In the context of a solar-powered greenhouse system, the solar inverter would be essential for converting the solar energy collected by the panels into usable electricity to power various components such as fans, pumps, lighting, and climate control systems within the greenhouse.
Q:What is the role of a solar inverter in reactive power compensation?
The role of a solar inverter in reactive power compensation is to regulate and control the flow of reactive power in a solar power system. Reactive power is the power that oscillates between the source and load due to the presence of inductive or capacitive elements in the system. It does not contribute to the actual work done by the system but is necessary for the operation of certain devices. A solar inverter, specifically designed for reactive power compensation, is capable of measuring the reactive power in the system and adjusting its operation accordingly. It can generate or absorb reactive power as required to maintain a power factor close to unity. Power factor is a measure of how efficiently the electrical energy is being used and a high power factor indicates efficient utilization of electricity. By compensating for reactive power, a solar inverter ensures that the solar power system operates at optimal efficiency. It reduces the burden on the grid by supplying or absorbing reactive power locally instead of relying on the grid for compensation. This not only improves the overall power quality but also reduces the losses in the system. Additionally, it helps to stabilize voltage levels and reduce voltage fluctuations, which can be beneficial for sensitive electrical equipment. In summary, the role of a solar inverter in reactive power compensation is to regulate the flow of reactive power in a solar power system, maintaining a high power factor and improving overall system efficiency. It plays a vital role in ensuring optimal operation of the solar power system and reducing the reliance on the grid for reactive power compensation.
Q:What are the key factors affecting the efficiency of a solar inverter?
The key factors affecting the efficiency of a solar inverter include the quality and design of the components used, the temperature at which the inverter operates, the type and condition of the solar panels connected to it, the efficiency of the conversion process from DC to AC power, and the overall system design and installation.
Q:Can a solar inverter be used with different types of grounding materials?
Yes, a solar inverter can be used with different types of grounding materials. However, it is important to ensure that the grounding system is compatible with the specific requirements and guidelines provided by the manufacturer of the solar inverter. The grounding materials used should meet the necessary safety standards and provide proper electrical grounding for the solar installation. It is recommended to consult with a qualified electrician or solar professional to determine the appropriate grounding materials for your specific solar inverter and installation.
Q:What is the function of a solar inverter?
The function of a solar inverter is to convert the direct current (DC) electricity produced by solar panels into alternating current (AC) electricity, which can be used to power household appliances and be fed back into the electrical grid.
Q:Can a solar inverter be used with solar-powered telecommunications systems?
Yes, a solar inverter can be used with solar-powered telecommunications systems. A solar inverter is an essential component in converting the direct current (DC) power generated by solar panels into alternating current (AC) power, which is compatible with telecommunications equipment. This enables solar-powered telecommunications systems to operate efficiently and effectively.
Q:What is the role of a galvanic isolation transformer in a solar inverter?
The role of a galvanic isolation transformer in a solar inverter is to provide electrical isolation between the solar panels and the grid, ensuring the safety of the system. It prevents any direct electrical connection between the high voltage DC side and the low voltage AC side, while allowing the transfer of power between them. This isolation protects both the system components and the users from potential electrical hazards, such as short circuits or ground faults. Additionally, the galvanic isolation transformer helps reduce noise and interference in the system, enhancing the overall performance and reliability of the solar inverter.
Q:How does a solar inverter communicate with other devices in a solar power system?
A solar inverter communicates with other devices in a solar power system through various communication protocols and interfaces. One common method is through wired connections using communication interfaces such as RS485 or Ethernet. These interfaces allow the inverter to establish a direct connection with other devices such as solar panels, batteries, and monitoring systems. In addition to wired connections, wireless communication methods are also used. This includes technologies like Wi-Fi, Zigbee, or Bluetooth, which enable the inverter to connect with other devices within a certain range. Wireless communication is often used for monitoring and control purposes, allowing users to remotely access and manage their solar power system. The communication between the solar inverter and other devices is crucial for the overall performance and efficiency of the solar power system. It enables the inverter to receive important data from the solar panels, such as voltage, current, and temperature, which is necessary for optimal power conversion. The inverter can then adjust its operations based on this information to maximize the power output and ensure system safety. Furthermore, communication with other devices like batteries allows the solar inverter to manage the charging and discharging cycles, optimizing energy storage and utilization. This ensures that excess energy generated by the solar panels is efficiently stored in the batteries and used during periods of low sunlight. Overall, the communication capabilities of a solar inverter play a crucial role in the integration and coordination of different components within a solar power system. It enables efficient power conversion, monitoring, and control, ultimately maximizing the performance and benefits of solar energy generation.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords