• High Power MPPT Solar Charge Controller Off-Grid Solar Power Systems with Solar Inverter 8kw System 1
  • High Power MPPT Solar Charge Controller Off-Grid Solar Power Systems with Solar Inverter 8kw System 2
  • High Power MPPT Solar Charge Controller Off-Grid Solar Power Systems with Solar Inverter 8kw System 3
  • High Power MPPT Solar Charge Controller Off-Grid Solar Power Systems with Solar Inverter 8kw System 4
High Power MPPT Solar Charge Controller Off-Grid Solar Power Systems with Solar Inverter 8kw

High Power MPPT Solar Charge Controller Off-Grid Solar Power Systems with Solar Inverter 8kw

Ref Price:
get latest price
Loading Port:
China main port
Payment Terms:
TT or LC
Min Order Qty:
1 pc
Supply Capability:
1000 pc/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing
High Power MPPT Solar Charge Controller

GSC Series modular MPPT solar controller unit is a complete solar energy conversion, tracking, protection combined systems, this series product is developed depending on the needs of green power by EAST company. The solar energy collected by the PV panel is transferred into stable DC power output, advanced Maximum Power Point Tracking Technology (MPPT)and intelligent battery management system,intelligent monitoring system can be connected to PC by RS232/USB/RS485,remote monitoring by SNMP. Suitable for a variety of off-grid solar power systems.

Efficient and stable,maximize the output power
● High power modular design,can parallel 8 pcs,maintenance is simple and fast, efficient and reliable system for easy expansion.
● High speed DSP the core control system and MPPT Maximum Power Point Tracking Technology,ensuring maximum output power of the system, improving the power generation efficiency of photovoltaic panels.
● Advanced multi-level control technology, switching losses smaller, more efficient.
● Professional cooling duct design, effectively discharge machine heat, to ensure stable operation of the controller
● Multiple input for the system, suitable for a variety of applications, roof, slope system.

Perfect protection design, safe and reliable
● Foolproof design is used in the system,ensure modules hot-swappable safety, providing safety operating for modules.
● PV input/output over/under voltage、PV reverse 、output anti-anti-irrigation、over temperature and other protections.

Smart battery management system
● Best charging mode can be used depending on battery type and capacity, to extend battery life.
● Over charging and over discharging protections.

Unattended and intelligent monitoring:
● After battery low voltage and automatically shut down, PV comes back,system will auto restart and charge the battery.
● RS232、USB and RS485 bus interface are available, real-time monitoring, testing can be done by communicating with PC,
SNMP(optional)net system is also available for remote real-time monitoring.

Model

GSC110-240

GSC336-384

PV Input Range

1-8

Single Max Input Power

0-500Vdc

0-750Vdc

Battery Numbers

7KW-17KW

24KW-27.5KW

Max Charging Current

55-120pcs can be set(2V per pcs)

165-192pcs can be set(2V per pcs)

Max Charging Current

60A/120A/180A/240A/300A/360A/420A/480A

Equalizing Charging Voltage

(each one 2.4V)±1%

Float Charging Voltage

(each one 2.3V)±1%

Temperature Compensation

The voltage increases 2mV while temperature decrease 1℃

Shared Parameters

Max Efficiency

> 98%

Static Losses

< 5% (system rated current)

MPPT Accuracy

0.99

Dynamic Response

25%-50%-25% or 50%-75%-50% load change 3ms

Display

LCD + LED

Cooling

Forced ventilation (fan speed changes with load)

Noise

≤60dB

Protection

PV reverse、BUS over voltage、output over voltage、output reverse、

PV over / under voltage

Communication

RS232 / RS485 / SNMP card(optional)

IP Level

IP20

Operating Temperature

From -20℃ to +45℃

Humidity

0-95% (non-condensing)

Storage Temperature

From -25℃ to +85℃

Attitude

1000m with rated power (increase 100m, reduce power 1%) Max.4000m

Dimensions (WxDxH mm)

500x620x1050

Packing Dimensions (WxDxH mm)

585x710x1110

Weight(kg)

Frame: 80kg ; MPPT power module: 5kg/unit

·         Q. What is an UPS and What it is for ?

An uninterruptible power supply (UPS) is a device that allows your computer or telephone switch or critical equipement to keep running for at least a short time or longer time when the primary power source is lost. It also provides protection from power surges, spikes, brownouts, interference and other unwanted problems on the supported equipment.

·         Q. How long the UPS to run when power goes?

This can take 3 paths.
1.You can pick a UPS that is rated for pretty much the full VA you need so it will be running at 100% of capability and will thus last 'n' minutes.
2.You can pick a UPS that is rated at a much higher VA value than you really need so, for example, is running at 50% of capability and will thus last for longer than the UPS from option 1.
3You can use extra external battery packs to run for longer. If charging capability allows, the more and the bigger batteries you take with, the longer time UPS runs. 
or using a generator after about 6 hours, it will be more cost-effective, with a short runtime UPS to bridge the generator start-up gap.

High Power MPPT Solar Charge Controller Off-grid Solar Power Systems

Q: What is the importance of surge protection in a solar inverter?
Surge protection is crucial in a solar inverter as it safeguards the system against voltage spikes or power surges. These surges can occur due to lightning strikes, grid fluctuations, or other electrical disturbances, and can potentially damage the sensitive electronics in the inverter. Surge protection devices divert excessive voltage away from the solar inverter, preventing costly damage and ensuring the efficient and uninterrupted operation of the solar power system.
Q: Can a solar inverter be used with different types of tracking systems?
Yes, a solar inverter can be used with different types of tracking systems. The function of a solar inverter is to convert the DC (direct current) generated by the solar panels into AC (alternating current) that can be used to power electrical devices. As long as the tracking system is capable of generating DC power from the solar panels, the solar inverter can be used to convert it into usable AC power.
Q: Can a solar inverter be used with bifacial solar panels?
Yes, a solar inverter can be used with bifacial solar panels. Bifacial solar panels have the ability to capture sunlight from both sides, making them more efficient. A solar inverter is responsible for converting the DC power generated by solar panels into usable AC power for homes or businesses. Therefore, it can easily be used with bifacial solar panels to ensure efficient power conversion and utilization.
Q: Are there any government incentives for installing a solar inverter?
Yes, there are government incentives available for installing a solar inverter. Many countries and states offer various financial incentives, such as tax credits, rebates, grants, or low-interest loans to promote the adoption of renewable energy technologies like solar inverters. These incentives aim to encourage individuals, businesses, and organizations to invest in clean energy solutions and reduce their carbon footprint. It is advisable to check with local government authorities or renewable energy agencies to determine the specific incentives available in your area.
Q: How do you choose the right size solar inverter for your system?
To choose the right size solar inverter for your system, you need to consider several factors. Firstly, determine the maximum power output (in watts) of your solar panels. This information can usually be found in the manufacturer's specifications. Next, calculate the total wattage of all your solar panels combined. Once you have this figure, select an inverter with a capacity slightly higher than your total wattage to allow for any future expansions or efficiency losses. Additionally, consider the type of inverter (string or micro) depending on your system layout and shading issues. Lastly, ensure that the inverter is compatible with your specific solar panel technology and has the necessary certifications and warranties for reliable performance.
Q: What is the difference between an on-grid and off-grid solar inverter?
The main difference between an on-grid and off-grid solar inverter lies in their functionality and purpose. An on-grid solar inverter is designed to convert the direct current (DC) electricity generated by solar panels into alternating current (AC) electricity that can be fed into the electrical grid. This type of inverter is used in grid-tied solar systems, where excess energy can be sold back to the utility company, allowing homeowners to benefit financially. On the other hand, an off-grid solar inverter is used in standalone solar systems that are not connected to the electrical grid. It is responsible for converting the DC electricity produced by solar panels into AC electricity suitable for powering off-grid appliances and storing energy in batteries. Off-grid inverters often include additional features like battery charging and management to ensure reliable power supply in the absence of grid connection. In summary, while both on-grid and off-grid solar inverters convert DC to AC electricity, their purposes differ significantly. On-grid inverters enable homeowners to utilize the grid as a power storage and distribution system, while off-grid inverters are essential for self-sustaining solar systems that operate independently of the grid.
Q: What are the different power output modes of a solar inverter?
The different power output modes of a solar inverter typically include grid-tie mode, off-grid mode, and hybrid mode. In grid-tie mode, the solar inverter synchronizes with the utility grid, allowing excess solar energy to be fed back into the grid. Off-grid mode, on the other hand, enables the solar inverter to operate independently, providing power to appliances and devices without the need for a utility grid connection. Hybrid mode combines the features of both grid-tie and off-grid modes, allowing the solar inverter to function with or without the grid, depending on the availability of solar energy and the user's preferences.
Q: Grid-connected inverter is generally divided into photovoltaic power generation grid-connected inverter, wind power grid-connected inverter, power equipment and grid-connected inverter and other power generation equipment power generation inverter.
Grid-connected inverter is generally used with large-scale photovoltaic power plant system, a lot of parallel PV string is connected to the same set of inverter DC input, the general power of the use of three-phase IGBT power module, power
Q: How does a solar inverter prevent islanding?
A solar inverter prevents islanding by continuously monitoring the grid's voltage and frequency. If the inverter detects a deviation from the normal range, it immediately disconnects from the grid to avoid supplying power to an isolated island. By maintaining synchronization with the grid, the inverter ensures that it only operates when the grid is active, preventing the risk of islanding and enhancing grid stability and safety.
Q: What is the role of a voltage regulator in a solar inverter?
The role of a voltage regulator in a solar inverter is to maintain a consistent and stable output voltage despite fluctuations in the input voltage from the solar panels. It ensures that the electricity generated by the solar panels is converted and delivered to the connected devices or grid at the required voltage level, preventing any damage to the devices and optimizing the overall efficiency of the solar power system.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords