MS Hot Rolled Low Carbon Alloy Steel Angle
- Loading Port:
- China main port
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 100 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Specification
Product Description:
OKorder is offering MS Hot Rolled Low Carbon Alloy Steel Angle at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to African, South American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.
Product Applications:
MS Hot Rolled Low Carbon Alloy Steel Angle are ideal for structural applications and are widely used in the construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries.
Product Advantages:
OKorder's MS Hot Rolled Low Carbon Alloy Steel Angle are durable, strong, and wide variety of sizes.
Main Product Features:
· Premium quality
· Prompt delivery & seaworthy packing (30 days after receiving deposit)
· Can be recycled and reused
· Mill test certification
· Professional Service
· Competitive pricing
Product Specifications:
Manufacture: Hot rolled
Grade: Q195 – 235
Certificates: ISO, SGS, BV, CIQ
Length: 6m – 12m, as per customer request
Packaging: Export packing, nude packing, bundled
EQUAL ANGLE STEEL | |||||
size(mm) | a(mm) | a1(mm) | thickness(mm) | kg/m | length |
50*50*4 | 50 | 50 | 4 | 3.059 | 6m,9m,12m |
50*50*5 | 50 | 50 | 5 | 3.77 | 6m,9m,12m |
50*50*6 | 50 | 50 | 6 | 4.465 | 6m,9m,12m |
63*63*5 | 63 | 63 | 5 | 4.822 | 6m,9m,12m |
63*63*6 | 63 | 63 | 6 | 5.721 | 6m,9m,12m |
65*65*5 | 65 | 65 | 5 | 5 | 6m,9m,12m |
65*65*6 | 65 | 65 | 6 | 5.91 | 6m,9m,12m |
65*65*8 | 65 | 65 | 8 | 7.66 | 6m,9m,12m |
75*75*5 | 75 | 75 | 5 | 5.818 | 6m,9m,12m |
75*75*6 | 75 | 75 | 6 | 6.905 | 6m,9m,12m |
75*75*8 | 75 | 75 | 8 | 9.03 | 6m,9m,12m |
75*75*9 | 75 | 75 | 9 | 9.96 | 6m,9m,12m |
75*75*10 | 75 | 75 | 10 | 11.089 | 6m,9m,12m |
80*80*6 | 80 | 80 | 6 | 7.375 | 6m,9m,12m |
80*80*7 | 80 | 80 | 7 | 8.525 | 6m,9m,12m |
80*80*8 | 80 | 80 | 8 | 9.658 | 6m,9m,12m |
80*80*10 | 80 | 80 | 10 | 11.874 | 6m,9m,12m |
90*90*6 | 90 | 90 | 6 | 8.35 | 6m,9m,12m |
90*90*7 | 90 | 90 | 7 | 9.656 | 6m,9m,12m |
90*90*8 | 90 | 90 | 8 | 10.946 | 6m,9m,12m |
90*90*10 | 90 | 90 | 10 | 13.476 | 6m,9m,12m |
100*100*6 | 100 | 100 | 6 | 9.366 | 6m,9m,12m |
100*100*7 | 100 | 100 | 7 | 10.83 | 6m,9m,12m |
100*100*8 | 100 | 100 | 8 | 12.276 | 6m,9m,12m |
100*100*9 | 100 | 100 | 9 | 13.49 | 6m,9m,12m |
100*100*10 | 100 | 100 | 10 | 15.12 | 6m,9m,12m |
100*100*12 | 100 | 100 | 12 | 17.898 | 6m,9m,12m |
120*120*8 | 120 | 120 | 8 | 14.88 | 6m,9m,12m |
120*120*10 | 120 | 120 | 10 | 18.37 | 6m,9m,12m |
120*120*12 | 120 | 120 | 12 | 21.66 | 6m,9m,12m |
125*125*8 | 125 | 125 | 8 | 15.504 | 6m,9m,12m |
125*125*10 | 125 | 125 | 10 | 19.133 | 6m,9m,12m |
125*125*12 | 125 | 125 | 12 | 22.696 | 6m,9m,12m |
130*130*10 | 130 | 130 | 10 | 19.8 | 6m,9m,12m |
130*130*12 | 130 | 130 | 12 | 23.6 | 6m,9m,12m |
130*130*13 | 130 | 130 | 13 | 25.4 | 6m,9m,12m |
130*130*14 | 130 | 130 | 14 | 27.2 | 6m,9m,12m |
150*150*10 | 150 | 150 | 10 | 23 | 6m,9m,12m |
150*150*12 | 150 | 150 | 12 | 27.3 | 6m,9m,12m |
150*150*14 | 150 | 150 | 14 | 31.6 | 6m,9m,12m |
150*150*15 | 150 | 150 | 15 | 33.8 | 6m,9m,12m |
140*140*10 | 140 | 140 | 10 | 21.49 | 6m,9m,12m |
140*140*12 | 140 | 140 | 12 | 25.52 | 6m,9m,12m |
140*140*14 | 140 | 140 | 14 | 29.49 | 6m,9m,12m |
160*160*10 | 160 | 160 | 10 | 24.73 | 6m,9m,12m |
160*160*12 | 160 | 160 | 12 | 29.39 | 6m,9m,12m |
160*160*14 | 160 | 160 | 14 | 33.99 | 6m,9m,12m |
180*180*12 | 180 | 180 | 12 | 33.16 | 6m,9m,12m |
180*180*14 | 180 | 180 | 14 | 39.39 | 6m,9m,12m |
180*180*16 | 180 | 180 | 16 | 43.45 | 6m,9m,12m |
180*180*18 | 180 | 180 | 18 | 48.63 | 6m,9m,12m |
200*200*14 | 200 | 200 | 14 | 42.89 | 6m,9m,12m |
200*200*16 | 200 | 200 | 16 | 48.68 | 6m,9m,12m |
200*200*18 | 200 | 200 | 18 | 54.4 | 6m,9m,12m |
200*200*20 | 200 | 200 | 20 | 60.06 | 6m,9m,12m |
200*200*24 | 200 | 200 | 24 | 71.17 | 6m,9m,12m |
FAQ:
Q1: Why buy Materials & Equipment from OKorder.com?
A1: All products offered byOKorder.com are carefully selected from China's most reliable manufacturing enterprises. Through its ISO certifications, OKorder.com adheres to the highest standards and a commitment to supply chain safety and customer satisfaction.
Q2: How do we guarantee the quality of our products?
A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.
Q3: How soon can we receive the product after purchase?
A3: Within three days of placing an order, we will arrange production. The normal sizes with the normal grade can be produced within one month. The specific shipping date is dependent upon international and government factors, the delivery to international main port about 45-60days.
Images:
- Q: Can steel angles be used for wall bracing?
- Indeed, wall bracing can make use of steel angles. These angles are frequently employed in construction to offer structural support and reinforcement. Their primary function is to fortify walls and ensure the overall stability of the edifice. Owing to their robustness and longevity, steel angles are a highly suitable option for wall bracing purposes. Furthermore, their fabrication and installation are straightforward, rendering them a cost-efficient solution for wall bracing requirements.
- Q: Are steel angles resistant to pests and termites?
- Yes, steel angles are highly resistant to pests and termites. Unlike wood, which is susceptible to damage from termites and other pests, steel is an inorganic material that does not provide a food source for them. This makes steel angles a great choice for construction projects in areas prone to pest infestations. Additionally, steel is not susceptible to rot or decay, further enhancing its resistance to pests. Therefore, using steel angles in construction can help protect buildings from potential damage caused by pests and termites.
- Q: How do you prevent steel angles from vibrating under dynamic loads?
- One possible way to prevent steel angles from vibrating under dynamic loads is by using damping techniques. Damping involves adding materials or structures that absorb or dissipate the energy generated by the vibrating steel angles. This can be achieved by attaching damping pads or strips made of viscoelastic materials to the steel angles, which help absorb and dissipate the vibration energy. Another approach is to incorporate dampers such as tuned mass dampers or friction dampers, which are designed to reduce vibrations by adding additional mass or introducing friction forces to counteract the dynamic loads. Proper design and reinforcement of the steel angles can also help to increase their stiffness and reduce the likelihood of vibration.
- Q: What are the common applications of steel angles?
- Steel angles have a wide range of applications in various industries such as construction, manufacturing, and engineering. Common uses include structural support in buildings, frames for machinery and equipment, reinforcement in concrete structures, brackets and supports in construction projects, and as components in aerospace and automotive industries.
- Q: What is the maximum temperature steel angles can withstand?
- The maximum temperature that steel angles can withstand depends on the specific grade of steel being used. Generally, carbon steel can withstand temperatures up to around 1000°C (1832°F) before it starts to lose its structural integrity. However, other factors such as the duration of exposure to high temperatures, the load applied, and the cooling rate after exposure also play a role in determining the maximum temperature that steel angles can withstand. It is always recommended to consult the manufacturer's specifications or a structural engineer to ensure that the steel angles are used within their safe temperature limits.
- Q: What is the maximum shear force for a steel angle?
- The maximum shear force for a steel angle depends on various factors such as the material properties, size, and design specifications. To determine the maximum shear force, it is necessary to consult the relevant engineering standards, guidelines, and calculations specific to the particular steel angle being used.
- Q: Can steel angles be used in high-rise or multi-story buildings?
- Certainly, high-rise or multi-story buildings can incorporate steel angles into their structures. Construction often relies on steel angles because of their exceptional strength, versatility, and cost-effectiveness. When it comes to high-rise buildings, steel angles find extensive use in various structural components like beams, columns, and bracing systems. These angles effectively facilitate load and force transfer within the building, significantly enhancing overall stability and structural integrity. Furthermore, the fabrication and installation of steel angles are convenient, enabling efficient construction processes for large-scale projects. Consequently, steel angles enjoy broad acceptance and application in the construction of high-rise or multi-story buildings.
- Q: How do you determine the load-bearing capacity of a steel angle?
- To determine the load-bearing capacity of a steel angle, several factors need to be considered. Firstly, the material properties of the steel angle must be known, such as its yield strength and ultimate tensile strength. These values can be obtained from the manufacturer or from relevant material standards. Next, the dimensions and shape of the steel angle play a crucial role in determining its load-bearing capacity. The angle's thickness, width, and length should be measured accurately. Additionally, the angle's shape, whether it is equal or unequal, must also be taken into account. Once these properties are known, the load-bearing capacity can be calculated using engineering principles and structural analysis methods. One common approach is to use the Euler's formula, which considers the bending and axial loads on the steel angle. The Euler's formula states that the load-bearing capacity of a steel angle is proportional to its moment of inertia and the modulus of elasticity. These values are calculated based on the dimensions and shape of the angle. Furthermore, other factors such as the angle's end supports, the type of loading (e.g., concentrated load or uniformly distributed load), and any additional factors of safety must be taken into consideration. It is important to note that determining the load-bearing capacity of a steel angle is a complex process that requires expertise in structural engineering. Therefore, it is recommended to consult with a qualified engineer or refer to relevant design codes and standards to ensure accurate and safe calculations.
- Q: What is the maximum allowable lateral torsional buckling stress for a steel angle?
- The maximum allowable lateral torsional buckling stress for a steel angle depends on various factors such as the size and shape of the angle, the material properties of the steel, and the specific design code or standard being followed. In general, the maximum allowable lateral torsional buckling stress for a steel angle can be determined based on the critical moment of inertia and the corresponding critical stress. The critical moment of inertia is a measure of the resistance of the angle to lateral torsional buckling, and it is influenced by the geometry and dimensions of the angle. The specific value for the maximum allowable lateral torsional buckling stress can be obtained from design codes such as the American Institute of Steel Construction (AISC) Manual of Steel Construction or the Eurocode. These codes provide guidelines and formulas for calculating the maximum allowable stress based on the angle's dimensions, material properties, and relevant factors such as the effective length and end conditions of the angle. Therefore, it is essential to refer to the appropriate design code or standard and consult a structural engineer or reference material to determine the maximum allowable lateral torsional buckling stress for a specific steel angle.
- Q: What is the typical thickness tolerance for steel angles?
- The typical thickness tolerance for steel angles can vary depending on the specific manufacturing standards and requirements. In general, the thickness tolerance for steel angles is typically within a range of +/- 0.005 to 0.010 inches (0.13 to 0.25 mm). However, it is important to note that this tolerance can also be influenced by the size and dimensions of the angle. Larger and thicker steel angles may have slightly looser tolerances compared to smaller and thinner angles. It is always recommended to consult the relevant industry standards or specifications to determine the specific thickness tolerance for a particular steel angle.
Send your message to us
MS Hot Rolled Low Carbon Alloy Steel Angle
- Loading Port:
- China main port
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 100 m.t.
- Supply Capability:
- 10000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords