• HRB400 stainless steel angle for construction System 1
  • HRB400 stainless steel angle for construction System 2
  • HRB400 stainless steel angle for construction System 3
  • HRB400 stainless steel angle for construction System 4
HRB400 stainless steel angle for construction

HRB400 stainless steel angle for construction

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
100000 m.t.
Supply Capability:
2000000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Standard:
JIS,GB,DIN,EN
Technique:
Hot Rolled
Shape:
LTZ
Surface Treatment:
Galvanized
Steel Grade:
Q235
Certification:
SGS
Thickness:
20MM
Length:
6M
Net Weight:
1000000
Packaging:

 

Product Description:

OKorder is offering hrb400 stainless steel angle for construction at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.

 

Product Applications:

HRB400 stainless steel angle are ideal for structural applications and are widely used in the construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries.

 

Product Advantages:

OKorder's steel angle are durable, strong, and resist corrosion.

 

Main Product Features:

·         Premium quality

·         Prompt delivery & seaworthy packing (30 days after receiving deposit)

·         Corrosion resistance

·         Can be recycled and reused

·         Mill test certification

·         Professional Service

·         Competitive pricing

 

 

Product Specifications:

 

1. Invoicing on theoretical weight or actual weight as customer request

2. Length: 6m, 9m, 12m as following table

3. Sizes

angle steel for construction

4. Payment terms:

1).100% irrevocable L/C at sight.

2).30% T/T prepaid and the balance against the copy of B/L.

3).30% T/T prepaid and the balance against L/C

5.Material details:

Usage & Applications of Angle Steel

According to the needs of different structures, Angle can compose to different force support component, and also can be the connections between components. It is widely used in various building structures and engineering structures such as roof beams, bridges, transmission towers, hoisting machinery and transport machinery, ships, industrial furnaces, reaction tower, container frame and warehouse etc.

Packaging & Delivery of Angle Steel

1. Packing: it is nude packed in bundles by steel wire rod

2. Bundle weight: not more than 3.5MT for bulk vessel; less than 3 MT for container load

3. Marks:

Color marking: There will be color marking on both end of the bundle for the cargo delivered by bulk vessel. That makes it easily to distinguish at the destination port.

Tag mark: there will be tag mark tied up on the bundles. The information usually including supplier logo and name, product name, made in China, shipping marks and other information request by the customer.

If loading by container the marking is not needed, but we will prepare it as customer request.

 

Production flow of Angle Steel

Material prepare (billet) —heat up—rough rolling—precision rolling—cooling—packing—storage and transportation

 

FAQ:

Q1: How soon can we receive the product after purchase?

A1: Within three days of placing an order, we will begin production. The specific shipping date is dependent upon international and government factors, but is typically 7 to 10 workdays.

Q2: What makes stainless steel stainless?

A2: Stainless steel must contain at least 10.5 % chromium. It is this element that reacts with the oxygen in the air to form a complex chrome-oxide surface layer that is invisible but strong enough to prevent further oxygen from "staining" (rusting) the surface. Higher levels of chromium and the addition of other alloying elements such as nickel and molybdenum enhance this surface layer and improve the corrosion resistance of the stainless material.

 

HRB400 stainless steel angle for construction

HRB400 stainless steel angle for construction

 

Q: Are steel angles suitable for conveyor systems?
Yes, steel angles are suitable for conveyor systems. They provide strength, stability, and durability, making them an ideal choice for supporting and guiding conveyor belts. Steel angles can withstand heavy loads, resist corrosion, and offer flexibility in designing conveyor structures.
Q: Can steel angles be used in the construction of hotels?
Yes, steel angles can be used in the construction of hotels. Steel angles are commonly used in construction for their strength and versatility. They can be used for structural support, framework, and reinforcement in various applications, including hotels. Their ability to withstand heavy loads and provide stability makes them a suitable choice in hotel construction projects.
Q: What are the common surface treatments used for steel angles?
The common surface treatments used for steel angles include galvanization, powder coating, and painting.
Q: How do you determine the load-bearing capacity of a steel angle?
In order to ascertain the load-bearing capacity of a steel angle, several considerations must be made. Initially, the material properties of the steel angle need to be known, including its yield strength and ultimate tensile strength. These values can be acquired from the manufacturer or relevant material standards. Subsequently, the dimensions and shape of the steel angle play a crucial role in determining its load-bearing capacity. Precise measurements of the angle's thickness, width, and length are necessary. Additionally, the angle's shape, whether it is equal or unequal, must also be taken into account. Once these properties are established, the load-bearing capacity can be calculated utilizing engineering principles and structural analysis methods. One common approach involves the use of Euler's formula, which considers the bending and axial loads on the steel angle. Euler's formula states that the load-bearing capacity of a steel angle is proportionate to its moment of inertia and the modulus of elasticity. These values are calculated based on the angle's dimensions and shape. Moreover, other factors such as the angle's end supports, the type of loading (e.g., concentrated load or uniformly distributed load), and any additional safety factors must be considered. It is important to note that determining the load-bearing capacity of a steel angle is a complex process that requires expertise in structural engineering. Therefore, it is advisable to seek consultation from a qualified engineer or refer to relevant design codes and standards to ensure accurate and safe calculations.
Q: Are there any specific design considerations when using steel angles?
There are several important factors to consider when using steel angles in design. Firstly, it is crucial to assess the load-bearing capacity of the steel angles. These angles are often used in structural applications where they must bear heavy loads. Therefore, it is vital to determine the required strength and stiffness of the angles based on the anticipated loads and design requirements. Secondly, it is necessary to carefully design the connections between the steel angles and other structural elements. These connections must be strong and secure. Various methods, such as bolting, welding, or using additional plates or brackets, can be employed to ensure the stability and integrity of the connections. In addition, the stability of the steel angles themselves must be taken into account. Long and slender steel angles can be susceptible to lateral-torsional buckling when subjected to bending loads. Therefore, appropriate measures, such as bracing or increasing the section modulus, should be implemented to enhance the angles' stability. Furthermore, steel angles may be prone to corrosion, particularly in outdoor or corrosive environments. To prevent or minimize corrosion, adequate protective coatings or treatments should be applied. This will ensure the long-term durability and performance of the angles. Lastly, when using steel angles in architectural or design applications, aesthetic considerations may also be important. The appearance of the angles, including the surface finish or color, should be taken into account to achieve the desired visual effect. To summarize, the load-bearing capacity, connection details, stability, corrosion protection, and aesthetic aspects are all crucial design considerations when working with steel angles. These factors are essential for ensuring the structural integrity, durability, and overall performance of steel angle applications.
Q: What are the different types of steel angles used in door and window frames?
There are several types of steel angles commonly used in door and window frames, each offering unique benefits and applications. 1. L-shaped Angle: This is the most common type of steel angle used in door and window frames. It features a 90-degree angle and is typically used to provide structural support and reinforcement. L-shaped angles are versatile and can be easily welded or bolted into place, making them suitable for various frame designs. 2. T-shaped Angle: As the name suggests, T-shaped angles have a cross-section resembling the letter "T." They are often used to provide additional strength and stability to door and window frames. T-shaped angles are commonly used in heavy-duty applications where increased load-bearing capacity is required. 3. Equal Angle: Equal angles have two equal sides that form a 90-degree angle. They are commonly used in door and window frames that require equal support on both sides. These angles are suitable for applications where symmetry and balance are important, ensuring that the frame remains stable and level. 4. Unequal Angle: Unlike equal angles, unequal angles have two sides of different lengths. They are commonly used in door and window frames that require varying degrees of support on each side. Unequal angles are versatile and can be used to compensate for differences in wall thickness or other structural considerations. 5. Slotted Angle: Slotted angles are often used in door and window frames that require adjustable or modular designs. They feature a series of holes or slots along their length, allowing for easy attachment and customization. Slotted angles are commonly used in DIY projects or applications where flexibility and adjustability are desired. It is worth noting that the choice of steel angle for door and window frames depends on various factors such as the specific application, load-bearing requirements, and aesthetic considerations. Consulting with a structural engineer or a professional in the field can help determine the most suitable type of steel angle for a particular project.
Q: How do you reinforce a steel angle for added stability?
One way to reinforce a steel angle for added stability is by adding gussets or diagonal braces. These additional elements can be attached to the steel angle to increase its strength and resistance to bending or twisting forces.
Q: Can steel angles be used in curtain wall systems?
Certainly, curtain wall systems can incorporate steel angles. Typically, in such systems, steel angles function as support brackets or mullions. These angles offer structural stability and reinforcement for the glass panels or other types of cladding materials. It is possible to customize the sizes and shapes of steel angles to suit the specific design needs of the curtain wall system. Moreover, welding or bolting steel angles together allows for the creation of the desired framework for the curtain wall. In conclusion, steel angles present a robust and dependable choice for integration into curtain wall systems.
Q: How do you calculate the weight-bearing capacity of a steel angle?
To calculate the weight-bearing capacity of a steel angle, you need to consider its dimensions, material properties, and loading conditions. The weight-bearing capacity can be calculated using engineering formulas and techniques such as the Euler formula or the AISC Manual. These calculations take into account factors like the cross-sectional area, moment of inertia, and the applied loads to determine the maximum load the steel angle can support without failure.
Q: Can steel angles be used as supports for mechanical or electrical equipment?
Indeed, mechanical or electrical equipment can be supported by steel angles. Due to their versatility and strength, steel angles are apt for a diverse array of uses. They offer stability, rigidity, and support, effectively securing mechanical or electrical equipment. The L-shaped configuration of steel angles facilitates effortless attachment and installation, rendering them convenient for a multitude of mounting necessities. Moreover, steel angles can be readily tailored and fabricated to fulfill precise specifications, guaranteeing a dependable and trustworthy support system for the equipment.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords