• HRB400 deformed bars with competitive price System 1
  • HRB400 deformed bars with competitive price System 2
  • HRB400 deformed bars with competitive price System 3
HRB400 deformed bars with competitive price

HRB400 deformed bars with competitive price

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
25 m.t.
Supply Capability:
100000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product Description:

 Specifications of HRB400 Deformed Steel Bar:

Standard

GB

HRB400

Diameter

10mm-32mm

Length

6M, 12M

Place of origin

Hebei, China mainland

Advantages

exact size, regular package, chemical and   mechanical properties are stable.

Type

Hot rolled deformed steel bar

Chemical Composition: (Please kindly find our chemistry of our material based on HRB400 as below for your information)

Grade

Technical data of the original chemical composition (%) 

C

Mn

Si

S

P

V

HRB400

≤0.25

≤1.60

≤0.80

≤0.045

≤0.045

0.04-0.12

Physical capability

Yield Strength (N/cm²)

Tensile Strength (N/cm²)

Elongation (%)

≥400

≥570

≥14

 

Theoretical weight and section area of each diameter as below for your information:

Diameter(mm)

Section area (mm²)

Mass(kg/m)

Weight of 12m bar(kg)

18

254.5

2.00

24

20

314.2

2.47

29.64

22

380.1

2.98

35.76

 

Usage and Applications of HRB400 Deformed Steel Bar:

Deformed bar is widely used in buildings, bridges, roads and other engineering construction. Big to highways, railways, bridges, culverts, tunnels, public facilities such as flood control, dam, small to housing construction, beam, column, wall and the foundation of the plate, deformed bar is an integral structure material. With the development of world economy  and the vigorous development of infrastructure construction, real estate, the demand for deformed bar will be larger and larger..

Packaging & Delivery of HRB400 Deformed Steel Bar:

Packaging Detail: products are packed in bundle and then shipped by container or bulk vessel, deformed bar is usually naked strapping delivery, when storing, please pay attention to moisture proof. The performance of rust will produce adverse effect.

Each bundle weight: 2-3MT, or as required

Payment term: TT or L/C

Delivery Detail: within 45 days after received advanced payment or LC.

Label: to be specified by customer, generally, each bundle has 1-2 labels

Trade terms: FOB, CFR, CIF

 

HRB400 deformed bars with competitive price

HRB400 deformed bars with competitive price

HRB400 deformed bars with competitive price

 

 

*If you would like to get our price, please inform us the size, standard/material and quantity. Thank you very much for your attention.

 

Q: What is the effect of improper storage on the corrosion resistance of steel rebars?
Improper storage of steel rebars can significantly reduce their corrosion resistance. When exposed to moisture, humidity, or extreme environmental conditions, steel rebars can develop rust and corrosion. This compromises their structural integrity and durability, making them more susceptible to failure and compromising the overall strength of the reinforced concrete structure. Therefore, proper storage conditions, such as keeping rebars dry, protected from moisture and contaminants, and stored off the ground, are crucial to maintaining their corrosion resistance and ensuring their long-term performance.
Q: What are the common quality control tests for steel rebars?
There are several common quality control tests conducted on steel rebars to ensure their compliance with industry standards and specifications. These tests help assess the physical, mechanical, and chemical properties of the rebars, ensuring their durability and performance. Some of the common quality control tests for steel rebars include: 1. Tensile Test: This test determines the tensile strength, yield strength, and elongation of the rebars. It involves applying a gradually increasing force to the rebar until it fractures, measuring the maximum force it can withstand before breaking. 2. Bend Test: This test evaluates the rebars' ability to withstand bending without cracking or breaking. The steel rebar is bent to a specific angle and checked for any visible cracks or fractures. 3. Chemical Composition Analysis: This test determines the chemical composition of the steel rebars, ensuring they meet the required standards. It involves analyzing the levels of carbon, manganese, phosphorus, sulfur, and other elements present in the rebar. 4. Visual Inspection: This test involves a visual examination of the rebars to ensure they are free from surface defects, such as cracks, splits, or any other irregularities that may affect their structural integrity. 5. Dimensional Inspection: This test verifies the dimensions and shape of the rebars, checking for any deviations from the specified requirements. It involves measuring the diameter, length, and shape of the rebars using calibrated instruments. 6. Weldability Test: In case the rebars are intended for welding purposes, a weldability test is performed to assess their suitability for welding. This test involves welding the rebars and evaluating the quality of the weld joint, including factors like strength, porosity, and brittleness. 7. Corrosion Resistance Test: This test determines the rebars' resistance to corrosion, which is crucial for their long-term durability. It involves subjecting the rebars to accelerated corrosion conditions, such as exposure to corrosive environments or salt spray, and assessing their corrosion resistance. These quality control tests play a vital role in ensuring the quality and reliability of steel rebars used in construction projects. By conducting these tests, manufacturers and inspectors can identify any non-compliant or substandard rebars, ensuring the safety and structural integrity of the buildings and infrastructure where these rebars are used.
Q: How to calculate the theoretical elongation of finishing thread steel?
The theoretical elongation of fine thread steel is calculated by L=P.L/ (E.A), P is force, L steel bar is longer, E is elastic, and A is area.
Q: What is the effect of moisture on steel rebars?
The effect of moisture on steel rebars can be significant and can lead to various issues. Moisture can accelerate the corrosion process of steel rebars, causing them to rust and deteriorate over time. This corrosion weakens the structural integrity of the rebars and can lead to structural failures in concrete structures. When steel rebars are exposed to moisture, the water reacts with the iron in the steel, causing an electrochemical reaction known as corrosion. This reaction produces iron oxide or rust, which expands and causes the rebars to crack and spall. As the corrosion progresses, the rebars lose their strength, which can compromise the overall stability of the structure. Moisture can also contribute to the formation of carbonation in concrete, which further increases the risk of corrosion for steel rebars. Carbonation occurs when carbon dioxide from the atmosphere reacts with the calcium hydroxide in concrete, reducing the alkalinity of the concrete. This reduction in alkalinity lowers the passivation of the rebars, making them more susceptible to corrosion. In addition to corrosion, moisture can also lead to other problems such as concrete expansion, freeze-thaw damage, and efflorescence. When moisture enters the concrete and freezes, it expands, causing cracking and spalling. This freeze-thaw cycle can further accelerate the corrosion process of steel rebars. Efflorescence, on the other hand, is the crystalline deposit that forms on the surface of concrete when moisture evaporates and leaves behind salts. This white, powdery substance can degrade the appearance of concrete structures and indicate potential moisture-related issues. To mitigate the effects of moisture on steel rebars, various preventive measures can be taken. These include using corrosion-resistant rebars, applying protective coatings or membranes to the rebars, ensuring proper concrete cover over the rebars, and implementing proper drainage systems to prevent the accumulation of moisture. Regular inspections and maintenance are also crucial to identify and address any moisture-related issues before they escalate and cause structural problems.
Q: What are the different types of steel rebars used in earthquake-prone regions?
In earthquake-prone regions, various types of steel rebars are used to enhance the structural integrity and resilience of buildings. These rebars are specifically designed to withstand the powerful forces generated during seismic events, thus reducing the risk of structural failure. The different types of steel rebars commonly used in earthquake-prone regions include: 1. Mild Steel Rebars (MSR): These rebars, also known as carbon steel rebars, are the most commonly used type due to their affordability and availability. MSR rebars have a relatively low yield strength, typically ranging from 250 to 420 megapascals (MPa). While they provide basic reinforcement, they are not specifically designed to withstand intense seismic forces. 2. High-Strength Deformed Bars (HSD): HSD rebars have significantly higher yield strength compared to MSR rebars, typically ranging from 415 to 600 MPa. These rebars are manufactured by subjecting carbon steel to additional heat treatment and controlled cooling, resulting in improved strength and ductility. HSD rebars are more resistant to seismic forces and are commonly used in earthquake-prone regions. 3. Stainless Steel Rebars (SSR): Stainless steel rebars are highly resistant to corrosion and possess excellent strength characteristics. They are commonly used in coastal earthquake-prone regions where exposure to saltwater or corrosive environments is a concern. SSR rebars provide enhanced durability and longevity, reducing the risk of structural damage caused by corrosion over time. 4. Fiberglass Rebars: Fiberglass rebars, also known as FRP (fiber-reinforced polymer) rebars, are non-metallic reinforcement alternatives gaining popularity in earthquake-prone regions. Made from glass fibers embedded in a polymer resin matrix, FRP rebars offer excellent resistance to corrosion, making them suitable for coastal regions. Although they have lower strength compared to steel rebars, FRP rebars have high tensile strength, making them a viable option for seismic reinforcement. 5. Galvanized Rebars: Galvanized rebars are carbon steel rebars coated with a layer of zinc to enhance corrosion resistance. The zinc coating acts as a sacrificial layer, protecting the underlying steel from corrosion. While galvanized rebars are not specifically designed for seismic resistance, they offer improved durability in earthquake-prone regions with high moisture or corrosive conditions. It is important to note that the selection of steel rebars in earthquake-prone regions depends on various factors, including the level of seismic activity, building codes and regulations, budget constraints, and specific project requirements. Consulting with structural engineers and adhering to local building codes is crucial in determining the appropriate type of steel rebars for seismic reinforcement to ensure the safety and resilience of structures in these regions.
Q: What is the role of steel rebars in the construction of retaining walls?
Steel rebars play a crucial role in the construction of retaining walls as they provide reinforcement and strength to the wall structure. They are embedded within the concrete to enhance its tensile strength and prevent cracking or collapsing under pressure. The rebars distribute the load evenly and help the retaining wall resist the lateral forces exerted by the soil or water behind it, ensuring stability and durability of the structure.
Q: Can steel rebars be used in the construction of residential buildings?
Steel rebars are indeed suitable for the construction of residential buildings due to their strength and durability. When it comes to reinforced concrete structures, steel rebars are commonly utilized. Within residential construction, their primary purpose is to reinforce concrete foundations, beams, columns, and slabs. This reinforcement provides added support and enhances the structural integrity of the building, allowing it to withstand various loads and forces. Steel rebars are preferred over alternative materials due to their high tensile strength, resistance to corrosion, and ability to withstand extreme weather conditions. Furthermore, they are readily available, cost-effective, and can be customized to meet specific building requirements. Consequently, steel rebars play a vital role in the construction of residential buildings, ensuring their long-lasting stability and safety.
Q: How do steel rebars prevent cracking in concrete structures?
Steel rebars prevent cracking in concrete structures by providing tensile strength to the concrete. As concrete is strong in compression but weak in tension, the rebars act as a reinforcement by absorbing the tensile forces and distributing them throughout the structure. This helps to resist cracking and increase the overall durability and strength of the concrete structure.
Q: Are steel rebars susceptible to fatigue failure?
Yes, steel rebars are susceptible to fatigue failure. Fatigue failure occurs when repeated loading and unloading cycles of a material cause it to weaken and eventually break, and this applies to steel rebars as well. The repetitive stress and strain placed on rebars in structures, such as bridges or buildings, can lead to the development of cracks and failure over time if not properly managed.
Q: What is the effect of overloading on steel rebars?
Overloading on steel rebars can have a detrimental effect on their structural integrity. It can lead to deformation, bending, or even fracture of the rebars, compromising the overall strength and stability of the reinforced structure. Additionally, overloading can accelerate corrosion processes, reducing the rebars' lifespan and potentially causing structural failure. Therefore, it is essential to ensure that steel rebars are not subjected to excessive loads to maintain their performance and prevent potential hazards.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords