ASTM A615 deformed steel bar for construction
- Loading Port:
- Tianjin
- Payment Terms:
- TT or LC
- Min Order Qty:
- 25 m.t.
- Supply Capability:
- 100000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Product Description:
OKorder is offering ASTM A615 deformed steel bar for construction at great prices with worldwide shipping. Our supplier is a world-class manufacturer of steel, with our products utilized the world over. OKorder annually supplies products to European, North American and Asian markets. We provide quotations within 24 hours of receiving an inquiry and guarantee competitive prices.
Product Applications:
ASTM A615 deformed steel bar are ideal for structural applications and are widely used in the construction of buildings and bridges, and the manufacturing, petrochemical, and transportation industries.
Product Advantages:
OKorder's deformed steel bar are durable, strong, and resist corrosion.
Main Product Features:
· Premium quality
· Prompt delivery & seaworthy packing (30 days after receiving deposit)
· Corrosion resistance
· Can be recycled and reused
· Mill test certification
· Professional Service
· Competitive pricing
Product Specificati
Hot Rolled Steel Rebar HRB 500B
1.China direct supplier
2.Best service
3.Competitive price
4.Quantity assured
Product Description
Name | Steel,Hot Rolled Steel Structure,Deformed Steel Bar,China Manufacture H500B 12M |
Standard | ASTM A615 /BS BS 4449 /GB HRB/ JIS G3112 |
Grade | HRB500B |
Diameter | 12mm-40mm |
Length | 6-12m |
Technique | Low temperature hot-rolling reinforcing deformed steel rebar |
Tolerance | As the standard or as your requirement |
Application | Building, construction, road, bridge,etc |
Certificated | BV |
MOQ | 500tons per size steel rebar |
Packing details | Steel rebar packed in bundle or as your requirement |
Delivery | Within 30 days after deposit |
Payment | T/T or L/C |
Chemical Composition
Grade | Technical data of the original chemical composition (%) | |||||||
C | Mn | Si | S | P | V | |||
HRB400 | ≤0.25 | ≤1.60 | ≤0.80 | ≤0.045 | ≤0.045 | 0.04-0.12 | ||
Physics capability | ||||||||
Yield Strength(N/cm2) | Tensile Strength(N/cm2) | Elongation (%)
| ||||||
≥400 | ≥570 | ≥14 |
Theorectical weight
Diameter (MM) | Cross Sectional Area (MM2) | Theorectical Weight (KG/M) | Weight of 12M Bar (KG) | A Ton Contains 12M Bars (PCS) |
6 | 28.27 | 0.222 | 2.664 | 375.38 |
8 | 50.27 | 0.395 | 4.74 | 210.97 |
10 | 78.54 | 0.617 | 7.404 | 135.06 |
12 | 113.1 | 0.888 | 10.656 | 93.84 |
14 | 153.9 | 1.21 | 14.52 | 68.87 |
16 | 201.1 | 1.58 | 18.96 | 52.74 |
18 | 254.5 | 2 | 24 | 41.67 |
20 | 314.2 | 2.47 | 29.64 | 33.74 |
22 | 380.1 | 2.98 | 35.76 | 27.96 |
25 | 490.9 | 3.85 | 46.2 | 21.65 |
28 | 615.8 | 4.83 | 57.96 | 17.25 |
32 | 804.2 | 6.31 | 75.72 | 13.21 |
36 | 1018 | 7.99 | 98.88 | 10.43 |
40 | 1257 | 9.87 | 118.44 | 8.44 |
FAQ:
Q1: Can stainless steel rust?
A1: Stainless does not "rust" as you think of regular steel rusting with a red oxide on the surface that flakes off. If you see red rust it is probably due to some iron particles that have contaminated the surface of the stainless steel and it is these iron particles that are rusting. Look at the source of the rusting and see if you can remove it from the surface.
Q2: How do we guarantee the quality of our products?
A2: We have established an advanced quality management system which conducts strict quality tests at every step, from raw materials to the final product. At the same time, we provide extensive follow-up service assurances as required.
- Q: Can steel rebars be used in non-structural applications?
- Yes, steel rebars can be used in non-structural applications. While rebars are primarily used to reinforce concrete structures, they can also be utilized in non-structural applications where additional strength or support is desired. These applications include garden stakes, fence posts, trellises, and other similar uses. The high tensile strength of steel rebars makes them suitable for these non-structural applications, as they can provide increased stability and durability. However, it is important to note that the sizing and specifications of rebars used for non-structural applications may differ from those used in structural applications.
- Q: What is the typical weight of a steel rebar?
- The typical weight of a steel rebar varies depending on its size and length. However, a commonly used steel rebar, such as a #4 rebar, typically weighs around 9.5 pounds per foot or 14.2 kilograms per meter.
- Q: How do steel rebars affect the constructability of a project?
- Steel rebars play a crucial role in enhancing the constructability of a project in several ways. Firstly, they provide structural strength and stability to reinforced concrete structures. By reinforcing the concrete, rebars help to distribute the load more evenly, increasing the overall strength and durability of the project. Secondly, steel rebars allow for the construction of larger and taller structures. They provide the necessary tensile strength to counteract the concrete's weakness in resisting tension forces. This enables engineers and architects to design and build structures with greater flexibility, leading to more innovative and impressive architectural designs. Moreover, steel rebars help to ensure the integrity and safety of a project. They act as a reinforcement against external forces such as earthquakes, wind loads, and impacts. By resisting these forces, they enhance the structural stability, reducing the risk of collapse or damage during extreme conditions. Steel rebars also contribute to the longevity and maintenance of the project. Due to their high tensile strength and resistance to corrosion, they help extend the lifespan of the structure. This reduces the need for frequent repairs and replacements, resulting in cost savings and less disruption to the project. Furthermore, the use of steel rebars simplifies the construction process. They can be easily cut, bent, and shaped to fit the required specifications, making them highly adaptable to various project requirements. This flexibility allows for efficient construction, reducing the time and effort required for implementation. Overall, steel rebars significantly impact the constructability of a project by providing strength, stability, flexibility, safety, longevity, and simplification. Their use enables the construction of robust and aesthetically pleasing structures, ensuring the success and sustainability of the project.
- Q: Can steel rebars be used in nuclear power plant construction?
- Yes, steel rebars can be used in nuclear power plant construction. Steel rebars are commonly used as reinforcement in concrete structures, including those found in nuclear power plants. They provide strength and help enhance the structural integrity of the buildings and components within the plant. However, specific regulations and standards need to be followed to ensure the rebars meet the necessary requirements for nuclear safety.
- Q: Can steel rebars be used in structures with limited construction expertise?
- No, steel rebars should not be used in structures with limited construction expertise. The correct installation and placement of rebars require specialized knowledge and skills to ensure the structural integrity and safety of the building. Using rebars incorrectly could result in a compromised structure and potential hazards. It is essential to consult professionals with expertise in construction to handle the installation of rebars properly.
- Q: What are the different types of steel rebars used in high-rise buildings?
- The different types of steel rebars commonly used in high-rise buildings include carbon steel rebars, epoxy-coated rebars, stainless steel rebars, and galvanized rebars. These rebars have varying properties and are chosen based on factors like strength, corrosion resistance, and durability to ensure structural integrity and safety in the building's construction.
- Q: What is the average weight of a steel rebar?
- The average weight of a steel rebar can vary depending on its size and length. However, a common average weight for a typical steel rebar is around 0.75 pounds per foot.
- Q: How do steel rebars impact the overall constructability and scheduling of concrete projects?
- The constructability and scheduling of concrete projects are greatly influenced by the presence of steel rebars. These reinforcing bars are essential for providing strength and stability to concrete structures, ensuring their durability and resilience. To begin with, the inclusion of steel rebars within the concrete significantly improves the overall structural integrity of the project, enhancing its constructability. By reinforcing and supporting the concrete, the rebars enable the construction of taller and more complex structures. They help distribute the load and withstand tension and compression forces, making the project more reliable. Furthermore, the presence of steel rebars facilitates the scheduling of concrete projects. When properly planned and incorporated, the rebars can expedite construction timelines. By integrating the rebars into the concrete formwork, construction teams can efficiently pour and shape the concrete, reducing the curing time required to achieve the desired strength. This directly affects project scheduling, enabling faster construction progress and potential cost savings. In addition, the utilization of steel rebars in concrete projects allows for flexibility in design and construction. The ability to customize the placement, size, and spacing of rebars ensures that the concrete structure meets specific design requirements and intended functionality. This flexibility becomes particularly crucial in projects that involve intricate architectural features or require specific load-bearing capacities. However, it is important to acknowledge that the proper installation and coordination of steel rebars can present challenges in terms of scheduling. To avoid delays, rebar installation must be carefully coordinated with other construction activities. Moreover, quality control measures are essential to ensure the accurate placement and alignment of rebars, as any errors or deficiencies can significantly impact the overall quality and safety of the project. In conclusion, steel rebars have a significant impact on the constructability and scheduling of concrete projects. They enhance the strength and stability of concrete structures, allowing for the construction of more intricate and robust designs. Additionally, the proper incorporation of rebars can expedite construction timelines and provide flexibility in project scheduling. However, careful planning, coordination, and quality control are necessary to ensure the successful integration of rebars in concrete projects.
- Q: Can steel rebars be used in railway and transportation infrastructure?
- Yes, steel rebars can be used in railway and transportation infrastructure projects. Steel rebars are commonly used in the construction of bridges, tunnels, and other transportation-related structures due to their high strength, durability, and ability to withstand heavy loads. They provide structural reinforcement and enhance the overall stability and longevity of railway and transportation infrastructure.
- Q: Are there any alternatives to steel rebars in construction?
- Yes, there are alternatives to steel rebars in construction. Some common alternatives include fiberglass rebars, carbon fiber rebars, and basalt rebars. These alternatives offer advantages such as being lightweight, corrosion-resistant, and having high tensile strength. Additionally, materials like bamboo, timber, and certain polymers can also be used as alternatives to steel rebars in specific construction applications.
Send your message to us
ASTM A615 deformed steel bar for construction
- Loading Port:
- Tianjin
- Payment Terms:
- TT or LC
- Min Order Qty:
- 25 m.t.
- Supply Capability:
- 100000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords