• Good quality deformed bars with grade HRB400 System 1
  • Good quality deformed bars with grade HRB400 System 2
  • Good quality deformed bars with grade HRB400 System 3
Good quality deformed bars with grade HRB400

Good quality deformed bars with grade HRB400

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
25 m.t.
Supply Capability:
100000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product Description:

 Specifications of HRB400 Deformed Steel Bar:

Standard

GB

HRB400

Diameter

10mm-32mm

Length

6M, 12M

Place of origin

Hebei, China mainland

Advantages

exact size, regular package, chemical and   mechanical properties are stable.

Type

Hot rolled deformed steel bar

Chemical Composition: (Please kindly find our chemistry of our material based on HRB400 as below for your information)

Grade

Technical data of the original chemical composition (%) 

C

Mn

Si

S

P

V

HRB400

≤0.25

≤1.60

≤0.80

≤0.045

≤0.045

0.04-0.12

Physical capability

Yield Strength (N/cm²)

Tensile Strength (N/cm²)

Elongation (%)

≥400

≥570

≥14

 

Theoretical weight and section area of each diameter as below for your information:

Diameter(mm)

Section area (mm²)

Mass(kg/m)

Weight of 12m bar(kg)

18

254.5

2.00

24

20

314.2

2.47

29.64

22

380.1

2.98

35.76

 

Usage and Applications of HRB400 Deformed Steel Bar:

Deformed bar is widely used in buildings, bridges, roads and other engineering construction. Big to highways, railways, bridges, culverts, tunnels, public facilities such as flood control, dam, small to housing construction, beam, column, wall and the foundation of the plate, deformed bar is an integral structure material. With the development of world economy  and the vigorous development of infrastructure construction, real estate, the demand for deformed bar will be larger and larger..

Packaging & Delivery of HRB400 Deformed Steel Bar:

Packaging Detail: products are packed in bundle and then shipped by container or bulk vessel, deformed bar is usually naked strapping delivery, when storing, please pay attention to moisture proof. The performance of rust will produce adverse effect.

Each bundle weight: 2-3MT, or as required

Payment term: TT or L/C

Delivery Detail: within 45 days after received advanced payment or LC.

Label: to be specified by customer, generally, each bundle has 1-2 labels

Trade terms: FOB, CFR, CIF

 

Good quality deformed bars with grade HRB400

Good quality deformed bars with grade HRB400

Good quality deformed bars with grade HRB400

 

 

*If you would like to get our price, please inform us the size, standard/material and quantity. Thank you very much for your attention.

 

Q:How do steel rebars contribute to the sustainability of a building?
Steel rebars contribute to the sustainability of a building in several ways. Firstly, the use of steel rebars in reinforced concrete structures enhances the overall strength and durability of the building, extending its lifespan. This reduces the need for frequent repairs or replacements, resulting in less material consumption and waste generation over time. Furthermore, steel rebars are made from recycled materials, with a significant portion being manufactured from scrap metal. This reduces the demand for virgin steel production, which is an energy-intensive process and contributes to carbon emissions. By utilizing recycled steel rebars, buildings can significantly reduce their carbon footprint and conserve natural resources. Additionally, steel rebars help in enhancing the structural integrity of the building, making it more resistant to various external forces such as earthquakes, hurricanes, and other natural disasters. This increased resilience reduces the potential for catastrophic damage and the subsequent need for major reconstruction or demolition, saving both resources and costs. Moreover, the use of steel rebars facilitates the construction of taller and more open spaces, allowing for efficient use of the building's footprint. This is particularly relevant in urban areas where land availability is limited. By enabling the construction of taller buildings, steel rebars contribute to urban densification, which helps in reducing urban sprawl and preserving natural habitats. Lastly, steel rebars are highly recyclable at the end of their service life. When a building is demolished, the steel rebars can be easily extracted and recycled, avoiding the accumulation of construction waste in landfills. Recycling steel rebars saves energy and reduces the need for extracting and processing virgin materials, further contributing to the sustainability of the construction industry. In conclusion, steel rebars play a crucial role in enhancing the sustainability of a building by increasing its durability, utilizing recycled materials, improving structural resilience, enabling efficient land use, and facilitating the recycling of materials at the end of a building's life cycle.
Q:How do steel rebars impact the overall energy efficiency of a structure?
Steel rebars can have both positive and negative impacts on the overall energy efficiency of a structure. On one hand, steel rebars can enhance the structural integrity and durability of the building, leading to a longer lifespan and reduced energy consumption for repairs and maintenance. Additionally, steel rebars can be used to reinforce concrete, which provides better insulation and thermal efficiency. On the other hand, the production of steel rebars requires significant energy and emits greenhouse gases, contributing to the carbon footprint of the structure. Therefore, the overall energy efficiency of a structure depends on various factors, including the design, construction techniques, and the use of sustainable materials alongside steel rebars.
Q:Why is round bar more expensive than thread steel?
Round steel has a wide range of applications, many brands and different uses. Such as machining, shipbuilding and other user processing requirements are also different. Such as alloy round steel, Q345B, high carbon steel, 45#, 35#, general round Q235B, mainly material, ingredients, etc..
Q:How do steel rebars perform in structures exposed to harsh chemicals?
Steel rebars typically perform well in structures exposed to harsh chemicals. Steel is known for its high strength and durability, which makes it resistant to corrosion caused by chemical exposure. However, certain chemicals can still pose a threat to steel rebars and may cause corrosion over time. To mitigate this risk, protective coatings or other corrosion-resistant materials can be applied to the rebars to enhance their performance in such environments. Regular inspection and maintenance are also essential to ensure the rebars remain in good condition when exposed to harsh chemicals.
Q:Can steel rebars be used in structures with limited construction technology?
Yes, steel rebars can be used in structures with limited construction technology. Steel rebars are commonly used as reinforcement in concrete structures to enhance their strength and durability. They are versatile and can be easily incorporated into various construction techniques, making them suitable for structures with limited technology. Additionally, steel rebars offer superior resistance to load and can withstand harsh environmental conditions, ensuring the structural integrity of the building even with limited construction technology.
Q:How do steel rebars affect the load-bearing capacity of concrete structures?
Concrete structures greatly benefit from the use of steel rebars, as they play a crucial role in improving their load-bearing capacity. These rebars are embedded within the concrete to provide tensile strength, as concrete is known to be weak in tension. By reinforcing the concrete, rebars effectively distribute and bear the applied loads, ultimately enhancing the overall structural performance. The incorporation of steel rebars in concrete structures serves to resist cracking and prevent structural failure under various load conditions. When a load is exerted on a concrete structure, such as a beam or column, the rebars absorb the tensile forces generated by the load. This action safeguards the concrete from cracking and ensures the structure remains intact and stable. Furthermore, the utilization of rebars also enhances the flexural strength of concrete structures. Flexural strength refers to the capacity of a material to withstand bending forces. Through the reinforcement of concrete with rebars, the structure becomes more resistant to bending and can support heavier loads without experiencing excessive deflection or failure. Additionally, steel rebars play a pivotal role in enhancing the shear strength of concrete structures. Shear strength refers to the ability of a material to resist forces that cause one layer of the material to slide relative to another. By providing additional reinforcement, rebars strengthen the concrete against shear forces, thereby increasing the structure's resistance to lateral loads and preventing shear failure. In summary, steel rebars significantly bolster the load-bearing capacity of concrete structures by providing tensile, flexural, and shear strength. Their presence enables concrete structures to withstand higher loads, enhances their durability, and ensures their long-term structural integrity. Proper design and installation of rebars are imperative when constructing safe and structurally sound concrete buildings, bridges, and other infrastructure projects.
Q:Can steel rebars be used in structures with high aesthetic requirements?
Yes, steel rebars can be used in structures with high aesthetic requirements. While rebars are primarily used for their structural strength and reinforcement purposes, they can also be incorporated into architectural designs to enhance the visual appeal of a structure. With various surface finishes and coatings available, steel rebars can be customized to meet specific aesthetic requirements, ensuring they blend seamlessly with the overall design and aesthetics of the structure.
Q:What is hot rolled coil? Hot rolled coil relative to thread steel and other steel, is not considered a higher point?
Cold rolled strip is produced by pickling, rolling, annealing, finishing and oiling.Which requirements are higher for strip and thread steel, and because of the different products, the individual considers that there is no comparability.
Q:What are the weight and density of steel rebars?
Steel rebars, also known as reinforcing bars, are commonly utilized in construction to impart tensile strength to concrete structures. The weight and density of steel rebars may differ depending on their size and grade. The weight of a steel rebar is determined by its cross-sectional area and the specific weight of steel, which is roughly 7850 kilograms per cubic meter (or 0.2836 pounds per cubic inch). The cross-sectional area is usually quantified in square millimeters or square inches. For instance, a prevalent size of steel rebar is the #4 bar, possessing a diameter of 12.7 millimeters (or 0.5 inches) and a cross-sectional area of 127 square millimeters (or 0.197 square inches). By employing the specific weight of steel, we can compute the weight of a #4 rebar in the following way: Weight = Cross-sectional area x Specific weight of steel Weight = 127 mm^2 x 7850 kg/m^3 Weight = 998,950 grams or approximately 998.95 kilograms (or 2,201 pounds) Concerning density, the density of steel rebars coincides with the specific weight of steel, which is roughly 7850 kilograms per cubic meter. This density remains relatively consistent across diverse sizes and grades of steel rebars. It is important to acknowledge that the weight and density of steel rebars may slightly fluctuate based on the precise composition and manufacturing process. It is therefore prudent to refer to the manufacturer's specifications or consult engineering references for precise and up-to-date information.
Q:What is the cost of steel rebars compared to other reinforcement materials?
The cost of steel rebars is generally higher compared to other reinforcement materials such as fiberglass or basalt. However, steel rebars offer superior strength and durability, making them a preferred choice in many construction projects despite the higher price.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords