• Hot Rolled Galvanized Construction Deformed Twisted Steel Rebar System 1
  • Hot Rolled Galvanized Construction Deformed Twisted Steel Rebar System 2
  • Hot Rolled Galvanized Construction Deformed Twisted Steel Rebar System 3
  • Hot Rolled Galvanized Construction Deformed Twisted Steel Rebar System 4
  • Hot Rolled Galvanized Construction Deformed Twisted Steel Rebar System 5
  • Hot Rolled Galvanized Construction Deformed Twisted Steel Rebar System 6
Hot Rolled Galvanized Construction Deformed Twisted Steel Rebar

Hot Rolled Galvanized Construction Deformed Twisted Steel Rebar

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
180 m.t.
Supply Capability:
500000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Carbon Steel
Shape:
Steel Round Bar

Hot Rolled Galvanized Construction Deformed Twisted Steel Rebar


Description of Hot Rolled Galvanized Construction Deformed Twisted Steel Rebar

1, Diameter: 5.5mm-10mm Reinforced Steel Bar Hrb400B

                       10m- 40mm Reinforced Steel Bar Hrb400B

2, Length:  6m, 9m, 12m or customized

3, Standard: GB, ASTM, AISI, SAE, DIN, JIS, EN

                    OEM technology - send detailed technical parameters for accurate quotation.

2, Produce Process: smelt iron - EAF smelt billet - ESR smelt billet - 

                                  hot rolled or forged to get the steel round bar and plate

3, Heat Treatment: annealing, normalizing, tempering, quenching

4, Surface Treatment: Black

5, Quality Assurance: We accept third party inspection for all orders. 

     You can ask testing organizations such as SGS, BV, etc. to test our products before shipping.

 

Chemical Composition of Hot Rolled Galvanized Construction Deformed Twisted Steel Rebar

Grade

Technical data of the original chemical composition(%)

Reinforcing steel bar HRB335

C

Mn

Si

S

P

B

≤0.25

≤1.60

≤0.80

≤0.045

≤0.045

>0.0008

Physics Capability

Yield Strength(N/cm2)

Tensile Strength(N/cm2)

Elongation(%)

≥ 335

≥490

≥16

Reinforcing steel bar HRB400

C

Mn

Si

S

P

B

≤0.25

≤0.16

≤0.80

≤0.045

≤0.045

0.04-0.12

Physics Capability

Yield Strength(N/cm2)

Tensile Strength(N/cm2)

Elongation(%)

≥ 400

≥ 570

≥ 14


Products Show of Hot Rolled Galvanized Construction Deformed Twisted Steel Rebar

Astm 615 Bs4449 B500B Deformed Steel Rebars



Company Information

CNBM International Corporation is the most important trading platform of CNBM group.

Whith its advantages, CNBM International are mainly concentrate on Cement, Glass, Iron and Steel, Ceramics industries and devotes herself for supplying high qulity series of refractories as well as technical consultancies and logistics solutions.

Astm 615 Bs4449 B500B Deformed Steel RebarsAstm 615 Bs4449 B500B Deformed Steel Rebars 


F A Q

1, Your advantages?

     professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposale

2, Test & Certificate?

      SGS test is available, customer inspection before shipping is welcome, third party inspection is no problem

3,  Factory or Trading Company?

      CNBM is a trading company but we have so many protocol factories and CNBM works as a trading department of these factories. Also CNBM is the holding company of many factories.

4, Payment Terms?

    30% TT as deposit and 70% before delivery.

    Irrevocable L/C at sight.

5, Trading Terms?

    EXW, FOB, CIF, FFR, CNF

6, After-sale Service?

     CNBM provides the services and support you need for every step of our cooperation. We're the business partner you can trust.

     For any problem, please kindly contact us at any your convenient time.

We'll reply you in our first priority within 24 hours.

Q: How are tool steels used in the manufacturing of cutting tools?
Tool steels are used in the manufacturing of cutting tools due to their excellent hardness, toughness, and wear resistance. These steels are specifically designed to withstand high temperatures, pressures, and repeated impacts during cutting operations. They are used to make various cutting tools like drills, milling cutters, saws, and blades. The high hardness of tool steels allows them to retain their sharpness for longer periods, ensuring efficient cutting performance. Additionally, their toughness helps withstand the mechanical stresses encountered during cutting, while their wear resistance enables them to maintain their cutting edges even after prolonged use. Overall, tool steels are crucial in the manufacturing of cutting tools, enabling precise and efficient material removal processes in various industries.
Q: What are the different machining techniques used for special steel?
Some of the different machining techniques used for special steel include turning, milling, drilling, grinding, and honing. These techniques are used to shape and finish the special steel according to specific requirements and tolerances. Each technique has its own advantages and is chosen based on factors such as the type of special steel, desired dimensions, surface finish, and the complexity of the part being machined.
Q: How is special steel used in the manufacturing of machinery?
Special steel is used in the manufacturing of machinery due to its unique properties and characteristics. It provides exceptional strength, durability, and resistance to wear and corrosion, making it suitable for critical components such as gears, shafts, bearings, and cutting tools. Special steel also allows for precise machining and shaping, enabling the production of complex machine parts. Overall, special steel enhances the performance and reliability of machinery, ensuring efficient and long-lasting operation.
Q: What are the main applications of special steel in the automotive electrical systems?
Special steel is commonly used in automotive electrical systems for various applications such as manufacturing electrical connectors, terminals, and wiring harnesses. It offers high conductivity, corrosion resistance, and superior strength, making it an ideal choice for components that require efficient flow of electrical current and durability in harsh environments. Additionally, special steel can also be utilized in the construction of sensors, relays, and other electronic devices within the automotive electrical system, ensuring reliable performance and longevity.
Q: What are the specific requirements for special steel used in the agricultural sector?
Special steel used in the agricultural sector has specific requirements to ensure optimal performance and durability in the demanding conditions it will be subjected to. Some of the key requirements for special steel in the agricultural sector include: 1. Corrosion resistance: Agricultural equipment often comes into contact with corrosive substances such as fertilizers, pesticides, and animal waste. Special steel used in this sector must have high resistance to corrosion to prevent premature deterioration and ensure long service life. 2. High strength: Agricultural equipment is subjected to heavy loads, impacts, and vibrations during operation. Special steel used in this sector must possess high tensile strength and toughness to withstand these forces without deformation or failure. 3. Wear resistance: Agricultural machinery operates in abrasive environments, where soil, rocks, and other debris can cause significant wear on metal surfaces. Special steel used in the agricultural sector should have excellent wear resistance to maintain sharp cutting edges and prevent premature wear. 4. Machinability: Agricultural equipment often requires complex components with intricate shapes and profiles. Special steel used in this sector should have good machinability to enable easy fabrication, welding, and shaping of the steel into the desired form. 5. Heat resistance: Some agricultural processes involve high temperatures, such as heat treatment or exposure to hot gases. Special steel used in these applications should have good heat resistance to maintain its mechanical properties and structural integrity even at elevated temperatures. 6. Cost-effectiveness: Agricultural equipment manufacturers often need to balance performance with cost. Special steel used in the agricultural sector should provide a cost-effective solution, offering the desired properties at a competitive price. By meeting these specific requirements, special steel used in the agricultural sector can provide reliable and efficient performance, contributing to the productivity and longevity of agricultural machinery and equipment.
Q: What are the requirements for special steel used in automotive parts manufacturing?
The requirements for special steel used in automotive parts manufacturing are specific and crucial to ensure superior performance, safety, and durability of the vehicles. Here are some of the key requirements for special steel used in automotive parts manufacturing: 1. Strength and Hardness: Special steel used in automotive parts needs to have high strength and hardness to withstand the extreme stresses and loads that automotive components experience. This ensures the parts can endure heavy usage, resist deformation, and prevent failure under demanding conditions. 2. Ductility and Toughness: While being strong and hard, special steel must also possess good ductility and toughness. Ductility allows the steel to be formed and shaped into various intricate automotive parts, while toughness ensures that the parts can absorb energy and resist fracture or cracking upon impact. 3. Corrosion Resistance: Automotive parts are constantly exposed to various environmental conditions, including moisture, humidity, and road salts. Special steel used in automotive parts must exhibit excellent corrosion resistance to prevent rust and deterioration, thereby increasing the longevity and reliability of the parts. 4. Weldability: As automotive parts are often assembled through welding processes, it is essential for special steel to have good weldability. This allows for efficient and secure joining of different components, ensuring structural integrity and minimizing the risk of weld defects. 5. Heat Resistance: Special steel used in automotive parts manufacturing should have sufficient heat resistance to withstand high temperatures generated during engine operation, friction, or other thermal processes. This ensures that the steel maintains its mechanical properties even under extreme heat conditions, preventing premature failure or deformation. 6. Fatigue Strength: Automotive parts are subjected to repeated loading and unloading cycles, leading to fatigue failure if the steel does not have adequate fatigue strength. Special steel should possess high fatigue strength to withstand cyclic loading and resist fatigue cracks, enhancing the durability and reliability of the parts. 7. Dimensional Stability: Automotive parts need to maintain their shape and dimensions over time to ensure proper fit and functionality. Special steel used in manufacturing should exhibit dimensional stability, minimizing any warping or distortion during heat treatment or operational conditions. 8. Cost-effectiveness: While meeting the above requirements, special steel should also be cost-effective for automotive parts manufacturing. This means that the steel should be reasonably priced, readily available, and offer a good balance between cost and performance. Meeting these requirements is crucial for manufacturers to produce high-quality automotive parts that meet industry standards, perform optimally, and contribute to the overall safety and performance of vehicles.
Q: How does special steel perform in high-temperature corrosion?
Special steel has been specifically engineered to excel in environments with high-temperature corrosion. Its exceptional properties grant it exceptional resistance against oxidation and corrosive reactions when subjected to elevated temperatures. The high chromium content found in special steel is a key factor contributing to its performance in high-temperature corrosion. Chromium creates a protective oxide layer, referred to as a passive film, which functions as a barrier against corrosive elements. This passive film remains stable even under high temperatures, successfully preventing oxidation and corrosion. Furthermore, special steel often incorporates additional alloying elements like nickel, molybdenum, and titanium, which further enhance its ability to resist high-temperature corrosion. These elements augment the steel's capacity to withstand aggressive chemical environments typically encountered in industrial processes involving high temperatures and corrosive substances. Moreover, special steel is renowned for its remarkable mechanical properties, which encompass high strength and toughness. These qualities enable the steel to endure the harsh conditions associated with high-temperature corrosion. Even when exposed to extreme temperatures and corrosive chemicals, it can retain its structural integrity and dimensional stability. In conclusion, special steel's exceptional resistance against high-temperature corrosion makes it the ideal choice for various applications in industries such as petrochemical, power generation, and aerospace. Its capacity to maintain performance and durability in challenging environments guarantees the longevity and reliability of equipment and structures, ultimately reducing maintenance and replacement expenses.
Q: How is free-cutting steel used in the manufacturing of screws and bolts?
Free-cutting steel is used in the manufacturing of screws and bolts due to its exceptional machinability. It contains elements such as sulfur, phosphorus, lead, or selenium that act as lubricants during the cutting and machining process. These elements help to break the chips and reduce the friction between the metal and the cutting tool, resulting in improved efficiency and reduced tool wear. This type of steel enables faster production rates and higher precision in screw and bolt manufacturing.
Q: What are the limitations of welding special steel?
There are several limitations associated with welding special steel that need to be considered. Firstly, special steel, such as high-alloy steels or heat-resistant steels, often have a higher carbon content, which makes them prone to cracking during welding. This requires careful control of preheating, interpass temperature, and post-weld heat treatment to minimize the risk of cracking. Another limitation is the potential for distortion and warping during welding. Special steels have a higher thermal conductivity and lower thermal expansion coefficient compared to carbon steels, which means they dissipate heat more quickly and are more prone to distortion. Proper clamping and fixturing techniques are necessary to minimize these effects. Special steels can also be more sensitive to impurities, such as sulfur and phosphorus, which can lead to the formation of brittle compounds during welding. It is essential to use high-quality filler materials and ensure the cleanliness of the base metal to prevent the formation of these detrimental compounds. Furthermore, special steels often require specific welding techniques and parameters. For instance, some high-alloy steels require a slow cooling rate to prevent the formation of brittle microstructures. This may necessitate the use of specialized cooling methods such as post-weld heat treatment or controlled cooling rates during welding. Lastly, the cost of special steels can be significantly higher compared to carbon steels. This can limit their use in certain applications where budget constraints are a concern. Overall, while special steels offer enhanced properties for specific applications, their welding process requires careful consideration and adherence to specific procedures to overcome the limitations associated with cracking, distortion, impurities, and cost.
Q: What is the significance of alloying elements in special steel?
The significance of alloying elements in special steel is that they enhance the properties and performance of the steel. These elements are added in varying proportions to achieve desired characteristics such as increased strength, improved corrosion resistance, enhanced hardness, better heat resistance, or increased toughness. Alloying elements also play a crucial role in controlling the grain structure, reducing brittleness, and improving the overall mechanical properties of the steel. Thus, alloying elements are essential in tailoring the steel's properties to meet specific industrial applications and requirements.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords