• High Quality Galvanized 8mm Steel Wire Rod System 1
  • High Quality Galvanized 8mm Steel Wire Rod System 2
  • High Quality Galvanized 8mm Steel Wire Rod System 3
  • High Quality Galvanized 8mm Steel Wire Rod System 4
  • High Quality Galvanized 8mm Steel Wire Rod System 5
  • High Quality Galvanized 8mm Steel Wire Rod System 6
High Quality Galvanized 8mm Steel Wire Rod

High Quality Galvanized 8mm Steel Wire Rod

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
3 m.t.
Supply Capability:
10000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Specification

Type:
Carbon Steel,Spring Steel,Bearing Steel,Gear Steel,Deformed Steel,Stainless Steel,Alloy Steel
Shape:
Steel Coil,Steel Sheet,Steel Wire Rod,Steel Flat Bar,Steel Square Bar,Steel Angle,Steel Round Bar,Steel Billets
Technique:
Hot Rolled,Cold Rolled,Cold Drawn,ERW,Forged,Saw,Extruded,EFW,Spring
Surface Treatment:
Galvanized,Coated,Copper Coated,Color Coated,Oiled,Dry,Chromed Passivation,Polished,Bright,Black,PVDF Coated
Certification:
ISO,SGS,BV,IBR,RoHS,CE,API,BSI,UL
Thickness:
5.0-30mm
Width:
5.0-30mm
Length:
In coils
Outer Diameter:
5.0-30mm
Net Weight:
2m.t.
Packaging:
Seaworthy Packaging

High Quality Galvanized 8mm Steel Wire Rod

Detailed Information of the High Quality Galvanized 8mm Steel Wire Rod

NameHot Rolled High Carbon Wire Rod
ShapeRound Bar/Square Bar/Flat Bar/Plate/Wire
StandardGB/ASTM/SAE/AISI/DIN/JIS/EN/BS
Surface Treatment:Black/Peeling/Polished/Machined  
Delivery Condition:Hot Rolled or Forged/Peeled or Black Surface
TestSGS/UT 100% Elements Testing
Certificate:ISO/Mill Certificate
Service:24 hours online service /
more than 20 years trading and manufacture 
Quality Assurance:the third party inspection, such as SGS, BV, TUV…etc. is acceptable
Packaging Details:Seaworthy Packaging or as per customer's packing instruction

Chemical Composition of the High Quality Galvanized 8mm Steel Wire Rod

GradeChemical Composition(%)
CMnSiSPB
SAE10080.1max.0.3~0.500.15max0.050max≤0.040>0.0008
Mechanical properties
Yield strength(N/mm2)Tensile strength(N/mm2)Elongation(%)
250-280350-380≥32

 

Company Introduction the High Quality Galvanized 8mm Steel Wire Rod

CNBM International Corporation is the most import and export platform of CNBM group(China National Building Material Group Corporation) ,which is a state-owned enterprise, ranked in 270th of Fortune Global 500 in 2015.

With its advantages, CNBM International are mainly concentrate on Cement, Glass, Iron and Steel, Ceramics industries and devotes herself for supplying high quality series of refractories as well as technical consultancies and logistics solution.

High Quality Galvanized 8mm Steel Wire Rod

High Quality Galvanized 8mm Steel Wire Rod

After-sale serviceCNBM provides the services and support you need for every step of our cooperation. We’re the business partners you can trust; you can relax and get on with doing business. 
For any problem, please kindly contact us at any your convenient time, we’ll reply you in our first priority within 24 hours
Advantages Industry experience over 20 years.
Shipment of goods -More than 70 countries worldwide.
The most convenient transport and prompt delivery.
Competitive price with best service.
High technical production line with top quality products.
High reputation based on best quality products.

Packaging & Delivery the High Quality Galvanized 8mm Steel Wire Rod

Packaging DetailSea worthy packing /as per customer's packing instruction
Delivery Detail15 ~ 40 days after receiving the deposit

Products Show

High Quality Galvanized 8mm Steel Wire Rod

FAQ:

Are you a trader or manufacturer?Manufacturer
What’s the MOQ?3 metric ton
What’s your delivery time? 15-35 days after downpayment received
Do you Accept OEM service?Yes
what’s your delivery terms?FOB/CFR/CIF
What's the Payment Terms?30% as deposit,70% before shipment by T/T
Western Union acceptable for small amount.
L/C acceptable for large amount.
Scrow ,Paybal,Alipay are also ok 
Why  choose  us?Chose happens because of quality, then price, We can give you both. 
Additionally, we can also offer professional products inquiry, products knowledge train (for agents), smooth goods delivery, excellent customer solution proposals.
What's your available port of Shipment?Main Port, China
What’s your featured  services?Our service formula: good quality+ good price+ good service=customer's trust
Where are your Market?Covering more than 160 countries in the world

 

Q: What are the common applications of stainless special steel?
Stainless special steel, which is also known as stainless steel, possesses unique properties and characteristics that enable it to be extensively utilized in a wide range of applications. Some of the common uses of stainless special steel include: 1. In the construction industry, stainless steel is favored by architects and engineers for building facades, roofing, and structural components due to its high strength, corrosion resistance, and aesthetic appeal. 2. Within the automotive industry, stainless steel is extensively employed in the manufacturing of exhaust systems, mufflers, fuel tanks, and decorative trims, thanks to its resistance to corrosion, heat, and impact. 3. The aerospace industry utilizes stainless steel for the production of aircraft components such as frames, engine parts, and landing gear. This is due to stainless steel's exceptional strength-to-weight ratio, high-temperature resistance, and corrosion resistance, which make it suitable for the demanding conditions of aerospace applications. 4. In the medical industry, stainless steel is widely used for the manufacture of surgical instruments, implants, and medical equipment. Its biocompatibility, corrosion resistance, and ease of sterilization make it an ideal material for critical medical applications. 5. The food processing industry relies heavily on stainless steel for the manufacturing of storage tanks, pipes, and containers. This is because stainless steel possesses hygienic properties, corrosion resistance, and is easy to clean, ensuring the integrity and safety of food products. 6. The chemical industry makes extensive use of stainless steel due to its resistance to corrosion from various chemicals and acids. It is employed in the production of storage tanks, pipes, valves, and other equipment required in chemical processing plants. 7. In the marine industry, stainless steel is widely employed for manufacturing boat fittings, propellers, and underwater structures. Its resistance to corrosion from saltwater and harsh marine environments make it an excellent choice for marine applications. 8. The energy industry utilizes stainless steel in the manufacturing of pipelines, valves, and heat exchangers. Its high-temperature resistance, corrosion resistance, and durability make it suitable for use in power plants, oil refineries, and nuclear facilities. In summary, stainless special steel is a versatile material with exceptional properties, including corrosion resistance, strength, durability, and aesthetic appeal. This versatility allows it to find applications in various industries.
Q: How does special steel contribute to the renewable energy equipment industry?
The renewable energy equipment industry heavily relies on special steel, as it offers the strength, durability, and corrosion resistance needed for different components. Wind turbines, for instance, make extensive use of special steel alloys in their towers, blades, and gearboxes due to their high tensile strength and resistance to fatigue. This allows wind turbines to endure harsh environmental conditions and operate efficiently over extended periods. Additionally, special steel is widely employed in the manufacturing of solar power equipment. Stainless steel is often used to frame solar panels, providing excellent corrosion resistance and structural stability, ensuring their longevity and performance in outdoor settings. Moreover, special steel alloys are utilized in the production of solar trackers, enabling solar panels to track the sun's movement throughout the day and optimize energy generation. In the hydroelectric power industry, special steel is crucial in constructing turbine components such as blades, shafts, and casings. These components face high pressures, water flow, and abrasive wear, making the use of special steel essential for reliability and longevity. Furthermore, special steel is also integral in the production of energy storage systems like batteries and fuel cells. These technologies require materials with high conductivity, corrosion resistance, and mechanical strength, making special steel alloys ideal for their construction. Overall, special steel significantly contributes to the renewable energy equipment industry by providing the necessary strength, durability, and corrosion resistance for various components. Its utilization in wind turbines, solar panels, hydroelectric power systems, and energy storage technologies ensures the reliability and longevity of these equipment, ultimately promoting the growth and sustainability of the renewable energy sector.
Q: How does special steel contribute to improving product reliability in critical applications?
Special steel contributes to improving product reliability in critical applications by offering enhanced characteristics such as high strength, durability, corrosion resistance, and heat resistance. These properties make special steel ideal for withstanding extreme conditions and heavy loads, ensuring the stability and performance of critical applications. Additionally, special steel alloys can be tailored to specific application requirements, providing a custom solution that meets the unique demands of various industries. This helps to minimize the risk of failures, increase the lifespan of products, and enhance overall reliability, ultimately contributing to the safety and efficiency of critical applications.
Q: How does special steel contribute to reducing product rejection rates?
Special steel contributes to reducing product rejection rates by providing superior strength, durability, and resistance to corrosion. This ensures that the manufactured products meet the required specifications and perform optimally, reducing the likelihood of rejection due to quality issues. Additionally, special steel's precise composition and enhanced mechanical properties enable more accurate and consistent manufacturing processes, minimizing variations and defects that could lead to product rejection.
Q: What are the different methods of measuring the hardness of special steel?
There are several methods available for measuring the hardness of special steel. These methods can be categorized into two main categories: destructive and non-destructive testing. 1. Rockwell Hardness Test: This is a widely used destructive testing method that measures the depth of penetration of an indenter into the steel surface. The Rockwell hardness test provides a hardness value based on the resistance of the steel to indentation. It is a simple and quick method that requires minimal sample preparation. 2. Brinell Hardness Test: Another destructive testing method, the Brinell hardness test, involves applying a known load to a hardened steel ball and measuring the diameter of the indentation left on the steel surface. The hardness value is determined based on the ratio of the applied load to the surface area of the indentation. 3. Vickers Hardness Test: This is a micro-indentation test that utilizes a diamond pyramid-shaped indenter. The Vickers hardness test measures the diagonal length of the indentation left on the steel surface and calculates the hardness value based on the applied load. 4. Knoop Hardness Test: Similar to the Vickers test, the Knoop hardness test is a micro-indentation method that uses a diamond pyramid-shaped indenter. However, instead of measuring the diagonal length of the indentation, it measures the length of the long axis. This test is particularly useful for measuring the hardness of thin steel samples or steel coatings. 5. Ultrasonic Hardness Test: This non-destructive testing method measures the hardness of steel by analyzing the propagation of ultrasonic waves through the material. The hardness value is determined based on the correlation between the velocity of the waves and the hardness of the steel. 6. Magnetic Hardness Test: This non-destructive testing method utilizes magnetic properties to measure the hardness of steel. It involves applying a magnetic field to the steel and measuring the magnetic response. The hardness value is determined based on the correlation between the magnetic response and the hardness of the steel. It is important to note that each method has its advantages and limitations, and the choice of method depends on factors such as the type of steel, the required accuracy, the sample size, and the available equipment and expertise.
Q: How does precipitation hardening enhance the strength of special steel?
Precipitation hardening is a heat treatment process that enhances the strength of special steel by creating small, uniformly dispersed particles within the metal matrix. These particles act as obstacles to dislocation movement, making it more difficult for them to slide past each other and deform the material. This results in increased strength, hardness, and resistance to wear and fatigue, making the steel suitable for various demanding applications.
Q: What are the different wear-resistant grades of special steel?
In the market, one can find various grades of special steel that are resistant to wear. Each grade has its own unique properties and applications. Some commonly used grades include: 1. D2 Steel: This grade is known for its high resistance to wear and its exceptional toughness. It is often utilized in the manufacturing of cutting tools, punches, and dies. 2. M2 Steel: M2 steel is a type of high-speed steel that exhibits remarkable resistance to wear and heat. It is commonly employed in the production of drill bits, milling cutters, and other tools that require high hardness and wear resistance. 3. A2 Steel: A2 steel is a versatile grade known for its excellent resistance to wear and toughness. It is frequently utilized in the manufacturing of cold work tools, such as blanking dies and gauges. 4. O1 Steel: O1 steel is an oil-hardening tool steel that possesses good wear resistance and dimensional stability. It is commonly used in the production of blades, punches, and other cutting tools. 5. S7 Steel: S7 steel is a grade that is highly resistant to shock and wear. It is often employed in the manufacturing of chisels, shear blades, and other tools that require resistance to impact and wear. 6. AR400 Steel: AR400 steel is a specific type of abrasion-resistant steel that has a hardness of approximately 400 Brinell. It is frequently utilized in heavy-duty applications such as mining equipment, bulldozer blades, and dump truck bodies. These examples merely scratch the surface of the various wear-resistant grades of special steel available in the market. The choice of grade depends on the specific requirements of the application, including the type and intensity of wear, operating conditions, and desired hardness. Seeking advice from a steel supplier or expert can aid in selecting the most suitable grade for a particular application.
Q: How does special steel contribute to improved product aesthetics?
Special steel contributes to improved product aesthetics in several ways. Firstly, special steel can be formulated to have a higher level of purity, resulting in a cleaner and more polished appearance. This enhances the overall visual appeal of the product. Additionally, special steel can be engineered to have unique surface finishes, such as brushed or mirror-like effects, which can add a sophisticated and luxurious touch to the product design. Furthermore, special steel can be shaped and molded with precision, allowing for intricate and intricate designs that enhance the aesthetics of the product. Overall, the use of special steel in manufacturing helps to elevate the visual appeal of products, making them more attractive and visually pleasing to consumers.
Q: What is the role of alloying elements in special steel?
The role of alloying elements in special steel is crucial as their addition enhances the properties and characteristics of the steel. These elements are added in specific quantities and combinations to impart desirable traits such as increased strength, improved corrosion resistance, enhanced hardness, and superior heat resistance. One of the most common alloying elements used in special steel is chromium. Chromium helps in increasing the steel's resistance to corrosion and oxidation, making it suitable for applications in harsh environments. Additionally, it improves the steel's hardness and wear resistance. Another important alloying element is nickel. Nickel increases the steel's toughness, ductility, and strength, making it ideal for applications that require high strength and resilience. It also enhances the steel's resistance to corrosion and improves its ability to withstand high temperatures. Molybdenum is often used as an alloying element in special steel to enhance its strength, hardness, and toughness. It also improves the steel's resistance to corrosion and high-temperature environments. Manganese is another alloying element that contributes to the steel's strength, hardness, and wear resistance. Other alloying elements like vanadium, tungsten, and cobalt are used to further enhance specific properties of special steel. Vanadium, for example, improves the steel's strength, toughness, and wear resistance. Tungsten increases the steel's hardness, strength, and high-temperature resistance. Cobalt enhances the steel's magnetic properties, strength, and resistance to wear and corrosion. In summary, the role of alloying elements in special steel is to improve its properties and performance, making it suitable for specialized applications. By carefully selecting and incorporating these elements, manufacturers can tailor the steel to meet specific requirements, ensuring optimal performance in various industries such as aerospace, automotive, construction, and oil and gas.
Q: How is high-speed tool steel used in the manufacturing of drills and taps?
High-speed tool steel is used in the manufacturing of drills and taps because of its exceptional hardness, wear resistance, and heat resistance properties. This type of steel allows drills and taps to withstand high temperatures and friction, ensuring their durability and longevity. Additionally, high-speed tool steel enables these cutting tools to maintain their sharpness for longer periods, resulting in increased efficiency and precision during drilling and tapping operations.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords