High quality deformed bars with grade HRB400
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 25 m.t.
- Supply Capability:
- 100000 m.t./month
OKorder Service Pledge
OKorder Financial Service
You Might Also Like
Product Description:
Specifications of HRB400 Deformed Steel Bar:
Standard | GB | HRB400 | |
Diameter | 10mm-32mm | ||
Length | 6M, 12M | ||
Place of origin | Hebei, China mainland | ||
Advantages | exact size, regular package, chemical and mechanical properties are stable. | ||
Type | Hot rolled deformed steel bar |
Chemical Composition: (Please kindly find our chemistry of our material based on HRB400 as below for your information)
Grade | Technical data of the original chemical composition (%) | ||||||
C | Mn | Si | S | P | V | ||
HRB400 | ≤0.25 | ≤1.60 | ≤0.80 | ≤0.045 | ≤0.045 | 0.04-0.12 | |
Physical capability | |||||||
Yield Strength (N/cm²) | Tensile Strength (N/cm²) | Elongation (%) | |||||
≥400 | ≥570 | ≥14 |
Theoretical weight and section area of each diameter as below for your information:
Diameter(mm) | Section area (mm²) | Mass(kg/m) | Weight of 12m bar(kg) |
18 | 254.5 | 2.00 | 24 |
20 | 314.2 | 2.47 | 29.64 |
22 | 380.1 | 2.98 | 35.76 |
Usage and Applications of HRB400 Deformed Steel Bar:
Deformed bar is widely used in buildings, bridges, roads and other engineering construction. Big to highways, railways, bridges, culverts, tunnels, public facilities such as flood control, dam, small to housing construction, beam, column, wall and the foundation of the plate, deformed bar is an integral structure material. With the development of world economy and the vigorous development of infrastructure construction, real estate, the demand for deformed bar will be larger and larger..
Packaging & Delivery of HRB400 Deformed Steel Bar:
Packaging Detail: products are packed in bundle and then shipped by container or bulk vessel, deformed bar is usually naked strapping delivery, when storing, please pay attention to moisture proof. The performance of rust will produce adverse effect.
Each bundle weight: 2-3MT, or as required
Payment term: TT or L/C
Delivery Detail: within 45 days after received advanced payment or LC.
Label: to be specified by customer, generally, each bundle has 1-2 labels
Trade terms: FOB, CFR, CIF
*If you would like to get our price, please inform us the size, standard/material and quantity. Thank you very much for your attention.
- Q: What are the advantages of using fiber-reinforced polymer (FRP) rebars over steel rebars?
- There are several advantages of using fiber-reinforced polymer (FRP) rebars over steel rebars. Firstly, FRP rebars are significantly lighter than steel rebars, making them easier to handle and transport. Additionally, FRP rebars have a higher tensile strength than steel rebars, allowing for greater flexibility in design and reducing the need for additional reinforcement. FRP rebars are also non-corrosive, unlike steel rebars which can rust over time, making them more durable and longer-lasting. Lastly, FRP rebars are non-conductive, making them suitable for use in areas with electrical or magnetic fields. Overall, the use of FRP rebars offers numerous advantages in terms of weight, strength, durability, and versatility.
- Q: What is the difference between hot-rolled and cold-worked steel rebars?
- Hot-rolled steel rebars are produced by heating the steel billet to high temperatures and then passing it through rollers to shape and form it. This process results in rebars with a rough surface and varying dimensions. On the other hand, cold-worked steel rebars are produced by subjecting the hot-rolled rebars to a process called cold working, which involves further shaping and sizing by passing them through dies or rollers at room temperature. This process results in rebars with a smoother surface, tighter dimensional tolerances, and increased strength.
- Q: How are steel rebars stored and transported on-site?
- Steel rebars are typically stored on-site in bundles or stacks, either horizontally or vertically, with adequate spacing between each bundle to ensure stability and easy access. To transport them, rebars are usually loaded onto trucks using cranes or forklifts, secured with straps or chains to prevent movement or falling during transportation. It is important to handle and store rebars properly to prevent damage or accidents and ensure their quality and structural integrity.
- Q: Can steel rebars be used in tunnel construction projects?
- Yes, steel rebars can be used in tunnel construction projects. Steel rebars are commonly used as reinforcement in tunnel construction due to their high strength and durability. They help enhance the structural integrity of the tunnel by providing additional support to withstand various loads and ground conditions. Additionally, steel rebars can be easily bent and shaped to fit the required design specifications of the tunnel, making them a preferred choice in tunnel construction.
- Q: How do steel rebars affect the overall longevity of a structure?
- Steel rebars, also known as reinforcement bars, play a crucial role in enhancing the overall longevity of a structure. By providing strength and durability, rebars reinforce the concrete, making it more resistant to cracking and structural failure. This reinforcement ensures that the structure can withstand various external forces, such as extreme weather conditions, seismic activity, and heavy loads. Consequently, the use of steel rebars significantly extends the lifespan of a structure, ensuring its long-term stability and safety.
- Q: Can steel rebars be used in structures with extreme temperature variations?
- Structures that experience extreme temperature variations can generally utilize steel rebars. Steel possesses exceptional durability and strength due to its high melting point, making it suitable for various construction applications. However, there are several factors to consider when employing steel rebars in such structures. To begin with, steel exhibits thermal expansion, meaning it expands and contracts as temperatures fluctuate. If not properly addressed, this expansion and contraction can potentially stress and strain the structure. Engineers and architects counteract this issue by implementing design techniques such as incorporating expansion joints or allowing for thermal movement. These measures accommodate the steel's thermal expansion and prevent damage. Additionally, extreme temperature variations can impact the mechanical properties of steel. Exposure to high temperatures can cause steel to lose its strength and stiffness, compromising the structural integrity. Conversely, low temperatures can make the steel brittle, increasing the likelihood of cracks or fractures. Therefore, it is crucial to select steel rebars of the appropriate grade and quality, specifically designed to withstand the expected temperature variations. Furthermore, the type and purpose of the structure should be taken into consideration. For example, in structures where extreme temperature variations are anticipated, such as bridges or buildings in regions with hot summers and cold winters, thermal insulation or other measures should be incorporated into the design. These measures prevent excessive heat transfer or the accumulation of thermal stress. In conclusion, steel rebars can be employed in structures experiencing extreme temperature variations, but careful considerations must be made. By accounting for thermal expansion, selecting suitable steel grades, and incorporating design techniques to accommodate temperature changes, the structural integrity and performance can be maintained. This ensures the safety and longevity of the construction.
- Q: How do steel rebars affect the overall vibration resistance of a structure?
- Steel rebars can significantly enhance the overall vibration resistance of a structure. By providing additional strength and stiffness, rebars increase the structural integrity and help to distribute and dissipate vibrational energy. This reinforcement effectively reduces the magnitude of vibrations and minimizes the risk of structural damage or failure during dynamic events, such as earthquakes or high winds.
- Q: How are steel rebars classified based on their yield strength?
- Steel rebars are classified based on their yield strength by assigning them grades or designations, such as Grade 40, Grade 60, or Grade 75. These grades indicate the minimum yield strength in thousands of pounds per square inch (ksi) that the rebars are able to withstand before permanent deformation occurs.
- Q: Can steel rebars be used in the rehabilitation of existing structures?
- Yes, steel rebars can be used in the rehabilitation of existing structures. Steel rebars are commonly used for reinforcing existing structures to improve their strength and durability. By adding steel rebars, the structure can better withstand loads and stresses, thereby enhancing its overall structural integrity. Additionally, steel rebars can also help in preventing or mitigating the effects of deterioration, such as corrosion, which can prolong the lifespan of the rehabilitated structure.
- Q: How do steel rebars help in reducing construction time?
- Steel rebars contribute to the reduction of construction time in several ways. Firstly, they enhance the strength and durability of concrete structures, enabling builders to employ quicker construction techniques. This obviates the necessity for slower and more time-consuming methods as the rebars provide sufficient support for the structure's weight. Secondly, the reinforcement of concrete with steel rebars enhances the overall structural integrity of the building. Consequently, builders can employ thinner concrete sections without compromising the structure's strength. These thinner sections require less material and can be poured and cured more rapidly and easily, thus saving construction time. Thirdly, the installation of steel rebars is a speedy process due to their easy handling and installation characteristics. They can be conveniently cut and bent to fit the desired shape and size, facilitating efficient installation. Consequently, the requirement for complicated and time-consuming formwork is eliminated, resulting in a reduction in construction time. Fourthly, steel rebars offer design and construction flexibility, enabling the utilization of innovative and efficient building techniques. They can be utilized in a variety of applications, including beams, columns, and slabs, granting architects and engineers the freedom to design structures that can be rapidly and efficiently constructed. Lastly, steel rebars provide additional resistance to natural disasters such as seismic activity and extreme weather conditions. By reinforcing concrete with rebars, structures become more resilient, reducing the risk of damage and expediting the construction process. This is particularly crucial in areas that are prone to earthquakes or adverse weather conditions. In conclusion, steel rebars play a pivotal role in reducing construction time by providing strength, durability, flexibility, ease of installation, and the ability to reinforce concrete structures. These qualities facilitate faster construction methods and efficient use of materials.
Send your message to us
High quality deformed bars with grade HRB400
- Loading Port:
- Tianjin
- Payment Terms:
- TT OR LC
- Min Order Qty:
- 25 m.t.
- Supply Capability:
- 100000 m.t./month
OKorder Service Pledge
OKorder Financial Service
Similar products
Hot products
Hot Searches
Related keywords