• Deformed bars with grade HRB400,high quality System 1
  • Deformed bars with grade HRB400,high quality System 2
  • Deformed bars with grade HRB400,high quality System 3
Deformed bars with grade HRB400,high quality

Deformed bars with grade HRB400,high quality

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
25 m.t.
Supply Capability:
100000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product Description:

 Specifications of HRB400 Deformed Steel Bar:

Standard

GB

HRB400

Diameter

10mm-32mm

Length

6M, 12M

Place of origin

Hebei, China mainland

Advantages

exact size, regular package, chemical and   mechanical properties are stable.

Type

Hot rolled deformed steel bar

Chemical Composition: (Please kindly find our chemistry of our material based on HRB400 as below for your information)

Grade

Technical data of the original chemical composition (%) 

C

Mn

Si

S

P

V

HRB400

≤0.25

≤1.60

≤0.80

≤0.045

≤0.045

0.04-0.12

Physical capability

Yield Strength (N/cm²)

Tensile Strength (N/cm²)

Elongation (%)

≥400

≥570

≥14

 

Theoretical weight and section area of each diameter as below for your information:

Diameter(mm)

Section area (mm²)

Mass(kg/m)

Weight of 12m bar(kg)

18

254.5

2.00

24

20

314.2

2.47

29.64

22

380.1

2.98

35.76

 

Usage and Applications of HRB400 Deformed Steel Bar:

Deformed bar is widely used in buildings, bridges, roads and other engineering construction. Big to highways, railways, bridges, culverts, tunnels, public facilities such as flood control, dam, small to housing construction, beam, column, wall and the foundation of the plate, deformed bar is an integral structure material. With the development of world economy  and the vigorous development of infrastructure construction, real estate, the demand for deformed bar will be larger and larger..

Packaging & Delivery of HRB400 Deformed Steel Bar:

Packaging Detail: products are packed in bundle and then shipped by container or bulk vessel, deformed bar is usually naked strapping delivery, when storing, please pay attention to moisture proof. The performance of rust will produce adverse effect.

Each bundle weight: 2-3MT, or as required

Payment term: TT or L/C

Delivery Detail: within 45 days after received advanced payment or LC.

Label: to be specified by customer, generally, each bundle has 1-2 labels

Trade terms: FOB, CFR, CIF

 

Deformed bars with grade HRB400,high quality

Deformed bars with grade HRB400,high quality

Deformed bars with grade HRB400,high quality

 

 

*If you would like to get our price, please inform us the size, standard/material and quantity. Thank you very much for your attention.

 

Q:How do steel rebars contribute to the overall stiffness of a structure?
Steel rebars contribute to the overall stiffness of a structure by providing reinforcement and enhancing its load-bearing capacity. When embedded within concrete, steel rebars form a composite material known as reinforced concrete, which combines the compressive strength of concrete with the tensile strength of steel. The primary function of steel rebars is to resist tensile forces that can cause concrete to crack or fail. Concrete has excellent compressive strength but is weak in tension. By adding steel rebars, the overall stiffness of the structure is increased, as the rebars take up the tensile stresses and prevent the concrete from failing under tension. The rebars are strategically placed within the concrete to resist anticipated forces and distribute them evenly across the structure. As external loads are applied to the structure, such as the weight of the building or environmental forces like wind or earthquakes, the rebars counteract the tension caused by these loads. This reinforcement ensures that the structure remains intact and stable, preventing any major deformations or collapse. Moreover, steel rebars also contribute to the ductility of the structure. Ductility refers to the ability of a material to undergo deformation without fracturing. Steel has high ductility, and when incorporated into reinforced concrete, it allows the structure to withstand some level of flexure and movement without compromising its overall strength and stability. This improved ductility enhances the structural resilience, making the building more resistant to extreme external forces. In summary, steel rebars play a crucial role in contributing to the overall stiffness of a structure by reinforcing the concrete and providing tensile strength. They prevent cracking and failure under tension, distribute forces evenly, and increase the structural resilience and ductility. By combining the compressive strength of concrete with the tensile strength of steel, steel rebars ensure that the structure can withstand various loads and maintain its stability and integrity over time.
Q:What are the advantages of using epoxy-coated stainless steel rebars?
Epoxy-coated stainless steel rebars offer several advantages compared to traditional steel rebars. Firstly, the epoxy coating provides excellent corrosion resistance, protecting the rebar from moisture and chemicals present in the surrounding environment. This ensures the longevity and durability of the structure, reducing maintenance and repair costs over time. Additionally, stainless steel rebars possess high strength and are resistant to fire, making them suitable for use in harsh and high-temperature conditions. The epoxy coating also enhances the bond between the rebar and the concrete, improving the overall structural integrity. Lastly, the use of stainless steel rebars reduces the risk of staining or rust bleeding, resulting in a more aesthetically pleasing end product.
Q:Can steel rebars be used in power plant construction?
Yes, steel rebars can be used in power plant construction. Steel rebars are commonly used as reinforcement in concrete structures, including power plants, to enhance their strength and durability.
Q:Can steel rebars be replaced with other reinforcement materials?
Yes, steel rebars can be replaced with other reinforcement materials such as fiberglass, carbon fiber, or composite bars. These alternative materials offer advantages like higher tensile strength, corrosion resistance, and lighter weight. However, the choice of replacement material depends on the specific requirements of the construction project and should be evaluated carefully to ensure structural integrity and compliance with relevant codes and standards.
Q:What are the different types of splices used for steel rebars?
There are several types of splices used for steel rebars, including lap splices, mechanical splices, and welded splices. Lap splices involve overlapping two rebars and tying them together with wire or other connectors. Mechanical splices use couplers or threaded sleeves to join rebars together without overlapping. Welded splices involve welding the ends of two rebars together to create a strong connection. Each type of splice has its own advantages and may be used depending on factors such as the project requirements, rebar size, and construction methods.
Q:What is the maximum length of steel rebars available?
The maximum length of steel rebars available can vary depending on the manufacturer and supplier. However, in most cases, the standard maximum length of steel rebars is around 60 feet or 18 meters.
Q:What is the process of inspecting steel rebars on-site?
The quality and adherence to specifications of steel rebars on-site are ensured through a series of steps in the inspection process. Firstly, a visual inspection is conducted to identify any visible defects or damage, such as rust, cracks, bends, or improper dimensions. Immediate attention is given to any issues found. Next, accurate measurements are taken using tools like calipers or measuring tapes. The length, diameter, and shape of each rebar are compared against the project specifications to ensure they meet the required dimensions. For certain projects, chemical analysis of the steel rebars may be necessary to confirm their composition and strength. Samples are taken from different batches and sent to a lab for testing, with the results determining compliance with standards. Non-Destructive Testing (NDT) techniques are utilized to evaluate the internal integrity of the rebars without causing damage. Ultrasonic testing, magnetic particle inspection, and radiography are employed to detect hidden defects like cracks, voids, or inclusions. If welding is involved, the inspector checks the welds for proper penetration, alignment, and quality. This guarantees the strength and integrity of the joint. Throughout the inspection process, detailed records are maintained. These records include information about the inspections conducted, measurements taken, test results, and identified defects. They serve as evidence of compliance and can be referred to in case of disputes or future reference. Once the inspection is complete, a detailed report is prepared summarizing the findings. This report is shared with the project management team, engineers, and other relevant stakeholders. It highlights any non-compliance, defects, or areas that require attention. In conclusion, the on-site inspection of steel rebars is a comprehensive and systematic approach that ensures their quality, integrity, and compliance with project specifications and industry standards.
Q:How are steel rebars made?
Steel rebars, also known as reinforcing bars, are made through a process called hot rolling. First, steel billets are heated to extremely high temperatures and then passed through a series of rollers, which shapes them into long, cylindrical bars. These bars are then cooled and cut into desired lengths to form the steel rebars, which are widely used in construction to reinforce concrete structures and provide strength and durability.
Q:What are the common myths and misconceptions about steel rebars?
There are several common myths and misconceptions about steel rebars that are important to address in order to have a better understanding of their properties and uses. One common myth is that steel rebars are easily susceptible to rust. While it is true that steel can rust, rebars are typically made with corrosion-resistant materials such as epoxy-coated or galvanized steel. These coatings provide a protective layer that helps prevent rusting, making rebars highly durable and long-lasting even in harsh environments. Another misconception is that larger rebars always provide stronger reinforcement. The size or diameter of a rebar does play a role in its strength, but it is not the only factor. The grade or quality of the steel used, as well as its proper placement within the concrete structure, are equally important. Engineers carefully calculate the required strength and spacing of rebars based on the specific load and structural requirements. Some people believe that steel rebars are only used in large-scale construction projects. However, rebars are commonly used in various construction applications, ranging from residential buildings to bridges and highways. Their versatility and strength make them an essential component in reinforcing concrete structures of all sizes. There is also a misconception that steel rebars increase the risk of electrical conductivity. While steel is a conductor of electricity, the presence of rebars in a concrete structure does not significantly increase the risk of electrical hazards. Concrete acts as an insulator, and rebars are typically encased within it, reducing the likelihood of contact with electrical currents. Lastly, there is a myth that steel rebars are expensive and unaffordable for most construction projects. In reality, the cost of rebars varies depending on factors such as the grade, size, and quantity required. There are various options available to suit different budgets and project needs. Additionally, the long lifespan and durability of steel rebars make them a cost-effective choice in the long run. In conclusion, it is important to dispel the myths and misconceptions surrounding steel rebars. Understanding their corrosion resistance, the role of size and placement, their versatility, the electrical conductivity risks, and their cost-effectiveness will help in making informed decisions when it comes to reinforcing concrete structures.
Q:Can steel rebars be used in the construction of dams or reservoirs?
Indeed, dams or reservoirs can utilize steel rebars in their construction. It is customary to employ steel rebars as reinforcement in concrete structures, such as dams and reservoirs, to bestow them with robustness and steadfastness. These rebars serve to evenly distribute and combat the tensile forces that may arise within these structures due to water pressure and external burdens. Steel rebars possess resistance to corrosion, durability, and commendable tensile strength, rendering them a perfect choice for such purposes. Moreover, their malleability and ease of installation grant flexibility in the design and construction phases.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords