• Deformed bars in Grade HRB400 with High Quality System 1
  • Deformed bars in Grade HRB400 with High Quality System 2
  • Deformed bars in Grade HRB400 with High Quality System 3
Deformed bars in Grade HRB400 with High Quality

Deformed bars in Grade HRB400 with High Quality

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
25 m.t.
Supply Capability:
100000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product Description:

Specifications of HRB400 Deformed Steel Bar:

Standard

GB

HRB400

Diameter

6mm,8mm,10mm,12mm,14mm,16mm,18mm,20mm,

22mm,25mm,28mm,32mm,36mm,40mm,50mm

Length

6M, 9M,12M or as required

Place of origin

Hebei, China mainland

Advantages

exact size, regular package, chemical and   mechanical properties are stable.

Type

Hot rolled deformed steel bar

Brand name

DRAGON

Chemical Composition: (Please kindly find our chemistry of our material based on HRB500 as below for your information)

Grade

Technical data of the original chemical composition (%)

C

Mn

Si

S

P

V

HRB400

≤0.25

≤1.60

≤0.80

≤0.045

≤0.045

0.04-0.12

Physical capability

Yield Strength (N/cm²)

Tensile Strength (N/cm²)

Elongation (%)

≥400

≥570

≥14

Theoretical weight and section area of each diameter as below for your information:

Diameter(mm)

Section area (mm²)

Mass(kg/m)

Weight of 12m bar(kg)

6

28.27

0.222

2.664

8

50.27

0.395

4.74

10

78.54

0.617

7.404

12

113.1

0.888

10.656

14

153.9

1.21

14.52

16

201.1

1.58

18.96

18

254.5

2.00

24

20

314.2

2.47

29.64

22

380.1

2.98

35.76

25

490.9

3.85

46.2

28

615.8

4.83

57.96

32

804.2

6.31

75.72

36

1018

7.99

98.88

40

1257

9.87

118.44

50

1964

15.42

185.04

Usage and Applications of HRB400 Deformed Steel Bar:

Deformed bar is widely used in buildings, bridges, roads and other engineering construction. Big to highways, railways, bridges, culverts, tunnels, public facilities such as flood control, dam, small to housing construction, beam, column, wall and the foundation of the plate, deformed bar is an integral structure material. With the development of world economy  and the vigorous development of infrastructure construction, real estate, the demand for deformed bar will be larger and larger..

Packaging & Delivery of HRB400 Deformed Steel Bar:

Packaging Detail: products are packed in bundle and then shipped by container or bulk vessel, deformed bar is usually naked strapping delivery, when storing, please pay attention to moisture proof. The performance of rust will produce adverse effect.

Each bundle weight: 2-3MT, or as required

Payment term: TT or L/C

Delivery Detail: within 45 days after received advanced payment or LC.

Label: to be specified by customer, generally, each bundle has 1-2 labels

Trade terms: FOB, CFR, CIF

 

Q: Can steel rebars be used in cold weather conditions?
Yes, steel rebars can be used in cold weather conditions. Steel has excellent cold weather performance and can maintain its structural integrity even in extremely low temperatures. However, it is important to ensure that proper construction practices are followed, such as protecting the rebars from moisture and using appropriate concrete curing methods to prevent freezing and cracking.
Q: What are the factors that can cause steel rebars to corrode prematurely?
There are several factors that can contribute to the premature corrosion of steel rebars. These include exposure to moisture, high levels of chloride ions, carbonation of concrete, inadequate concrete cover, poor quality of concrete or protective coatings, and the presence of other aggressive chemicals such as sulfates or acids. Environmental conditions, such as high humidity, coastal areas, or industrial environments, can also accelerate the corrosion process. Additionally, improper construction practices, such as inadequate compaction or curing of concrete, can lead to the initiation and progression of corrosion in steel rebars.
Q: What is the best way to store steel rebars on site?
The best way to store steel rebars on site is to keep them on a flat, elevated surface away from moisture and direct contact with the ground. They should be stacked in an organized manner, with each layer separated by wooden planks or other suitable materials to prevent rusting and ensure proper airflow. Additionally, covering the rebars with a tarp or plastic sheet can provide extra protection from the elements.
Q: How do steel rebars affect the overall cost-effectiveness of a structure?
Steel rebars can greatly enhance the cost-effectiveness of a structure by providing added strength and durability. Their use reduces the need for excessive concrete, leading to cost savings in material and construction time. Additionally, the longevity and resistance to corrosion offered by steel rebars can result in reduced maintenance and repair expenses over the lifespan of the structure.
Q: Can steel rebars be used in structures with high radiation shielding requirements?
Steel rebars can indeed be used in structures with high radiation shielding requirements. Steel is known for its excellent strength and durability, making it a popular choice for reinforcing concrete structures. When it comes to radiation shielding, steel rebars can effectively provide a certain level of protection due to their dense composition. While steel itself is not a highly effective radiation shield compared to materials like lead or concrete, it can still contribute to reducing the transmission of radiation. The dense nature of steel helps to scatter and absorb some of the radiation passing through the structure, thereby reducing the overall exposure. However, it's important to note that for structures with extremely high radiation shielding requirements, additional measures may be necessary. These could include incorporating other radiation-absorbing materials like lead or concrete, or implementing specific design features to enhance the shielding capabilities of the structure. Ultimately, the choice of materials and design considerations should be made in consultation with radiation safety experts and engineers who can assess the specific shielding requirements and recommend the most appropriate solutions.
Q: Can steel rebars be used in high-temperature applications?
No, steel rebars should not be used in high-temperature applications as they can lose their strength and structural integrity due to thermal expansion and potential oxidation.
Q: Can steel rebars be used in the construction of power plants or industrial facilities?
Steel rebars can be utilized in the construction of power plants and industrial facilities due to their exceptional strength and durability. They are an ideal option for reinforcing concrete structures in these types of facilities. With their ability to provide necessary strength and support, they can withstand heavy loads, vibrations, and extreme temperatures that are frequently encountered in power plants and industrial facilities. Moreover, steel rebars possess resistance to corrosion, which is particularly vital in such environments where exposure to moisture, chemicals, and other harsh elements is commonplace. Consequently, steel rebars are widely employed in the construction of power plants and industrial facilities to guarantee the buildings' structural integrity and long-lasting nature.
Q: What is the role of steel rebars in the construction of retaining walls?
Steel rebars play a crucial role in the construction of retaining walls as they provide reinforcement and strength to the wall structure. They are embedded within the concrete to enhance its tensile strength and prevent cracking or collapsing under pressure. The rebars distribute the load evenly and help the retaining wall resist the lateral forces exerted by the soil or water behind it, ensuring stability and durability of the structure.
Q: Are there any specific guidelines for storing steel rebars on-site?
Yes, there are specific guidelines for storing steel rebars on-site. Here are some key guidelines to consider: 1. Rebars should be stored on a flat, level surface to prevent distortion or bending. If the ground is not level, use wooden pallets or metal racks to create a stable storage area. 2. Ensure that the storage area is clean and free from any debris that could damage the rebars. Avoid storing rebars directly on the ground or in areas prone to water accumulation. 3. Proper stacking is important to prevent rebars from toppling over. Stack rebars in an orderly manner, making sure to align them vertically and horizontally. Use spacers or separators to maintain adequate spacing between the rebars and prevent them from touching each other. 4. If rebars are stored outdoors, cover them with a waterproof tarp or plastic sheeting to protect them from rain, snow, and moisture. This will help prevent rust and corrosion. 5. If rebars are stored indoors, ensure that the storage area has proper ventilation to prevent moisture buildup. This is particularly important to prevent rusting in humid environments. 6. Rebars should be stored away from any potential sources of damage, such as heavy machinery, construction equipment, or areas with high traffic. This will minimize the risk of accidental damage during construction activities. 7. Regularly inspect the rebars for any signs of damage, rust, or corrosion. If any rebars are found to be damaged, they should be removed from storage and replaced to ensure structural integrity in the construction project. Following these guidelines will help ensure that steel rebars are stored safely and maintain their structural integrity for use in construction projects.
Q: Are steel rebars suitable for use in high-rise buildings?
Yes, steel rebars are suitable for use in high-rise buildings. Steel rebars, also known as reinforcing bars, are commonly used in the construction industry to provide strength and stability to concrete structures. High-rise buildings require a strong and durable structural system to withstand various loads and forces such as wind, earthquakes, and the weight of the building itself. Steel rebars offer excellent tensile strength and ductility, making them ideal for reinforcing concrete in high-rise structures. One of the key advantages of steel rebars is their ability to resist tensile forces. Concrete is strong in compression but weak in tension, and steel rebars help counteract this weakness by providing the necessary tensile strength. This is crucial in high-rise buildings where the weight of the structure can cause tension on the concrete elements. By reinforcing the concrete with steel rebars, the overall structural integrity of the building is enhanced, ensuring its safety and stability. Additionally, steel rebars have superior ductility, which is the ability to deform under stress without fracturing. This property is essential in high-rise buildings as they are subject to dynamic loads and potential movements caused by factors like wind or seismic activity. Steel rebars can absorb and distribute these forces, reducing the risk of structural failure or collapse. Furthermore, steel rebars are readily available and cost-effective compared to alternative materials such as carbon fiber or fiberglass. They can be easily fabricated and installed in various shapes and sizes to fit the specific design requirements of high-rise buildings. However, it is important to note that the suitability of steel rebars in high-rise buildings also depends on proper design, installation, and regular maintenance. It is crucial to follow the relevant building codes and standards, ensure proper corrosion protection, and conduct regular inspections to detect any potential issues. By adhering to these practices, steel rebars can provide a reliable and durable reinforcement solution for high-rise buildings.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords