• Rebar #8 Diameter High Quality Deformed Bar HRB400 HRB500 Steel Rebar System 1
  • Rebar #8 Diameter High Quality Deformed Bar HRB400 HRB500 Steel Rebar System 2
  • Rebar #8 Diameter High Quality Deformed Bar HRB400 HRB500 Steel Rebar System 3
Rebar #8 Diameter High Quality Deformed Bar HRB400 HRB500 Steel Rebar

Rebar #8 Diameter High Quality Deformed Bar HRB400 HRB500 Steel Rebar

Ref Price:
get latest price
Loading Port:
Tianjin
Payment Terms:
TT OR LC
Min Order Qty:
200 m.t.
Supply Capability:
50000 m.t./month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

Product Description:

Specifications of HRB400 Deformed Steel Bar:

Standard

GB

HRB400

Diameter

6mm,8mm,10mm,12mm,14mm,16mm,18mm,20mm,

22mm,25mm,28mm,32mm,36mm,40mm,50mm

Length

6M, 9M,12M or as required

Place of origin

Hebei, China mainland

Advantages

exact size, regular package, chemical and   mechanical properties are stable.

Type

Hot rolled deformed steel bar

Brand name

DRAGON

Chemical Composition: (Please kindly find our chemistry of our material based on HRB500 as below for your information)

Grade

Technical data of the original chemical composition (%)

C

Mn

Si

S

P

V

HRB400

≤0.25

≤1.60

≤0.80

≤0.045

≤0.045

0.04-0.12

Physical capability

Yield Strength (N/cm²)

Tensile Strength (N/cm²)

Elongation (%)

≥400

≥570

≥14

Theoretical weight and section area of each diameter as below for your information:

Diameter(mm)

Section area (mm²)

Mass(kg/m)

Weight of 12m bar(kg)

6

28.27

0.222

2.664

8

50.27

0.395

4.74

10

78.54

0.617

7.404

12

113.1

0.888

10.656

14

153.9

1.21

14.52

16

201.1

1.58

18.96

18

254.5

2.00

24

20

314.2

2.47

29.64

22

380.1

2.98

35.76

25

490.9

3.85

46.2

28

615.8

4.83

57.96

32

804.2

6.31

75.72

36

1018

7.99

98.88

40

1257

9.87

118.44

50

1964

15.42

185.04

Usage and Applications of HRB400 Deformed Steel Bar:

Deformed bar is widely used in buildings, bridges, roads and other engineering construction. Big to highways, railways, bridges, culverts, tunnels, public facilities such as flood control, dam, small to housing construction, beam, column, wall and the foundation of the plate, deformed bar is an integral structure material. With the development of world economy  and the vigorous development of infrastructure construction, real estate, the demand for deformed bar will be larger and larger..

Packaging & Delivery of HRB400 Deformed Steel Bar:

Packaging Detail: products are packed in bundle and then shipped by container or bulk vessel, deformed bar is usually naked strapping delivery, when storing, please pay attention to moisture proof. The performance of rust will produce adverse effect.

Each bundle weight: 2-3MT, or as required

Payment term: TT or L/C

Delivery Detail: within 45 days after received advanced payment or LC.

Label: to be specified by customer, generally, each bundle has 1-2 labels

Trade terms: FOB, CFR, CIF

 

Q:What are the advantages of using epoxy-coated stainless steel rebars?
Epoxy-coated stainless steel rebars offer several advantages compared to traditional steel rebars. Firstly, the epoxy coating provides excellent corrosion resistance, protecting the rebar from moisture and chemicals present in the surrounding environment. This ensures the longevity and durability of the structure, reducing maintenance and repair costs over time. Additionally, stainless steel rebars possess high strength and are resistant to fire, making them suitable for use in harsh and high-temperature conditions. The epoxy coating also enhances the bond between the rebar and the concrete, improving the overall structural integrity. Lastly, the use of stainless steel rebars reduces the risk of staining or rust bleeding, resulting in a more aesthetically pleasing end product.
Q:What is the process of painting steel rebars?
The process of painting steel rebars typically involves several steps. First, the rebars must be cleaned thoroughly to remove any dirt, grease, or rust. This can be done using various methods such as sandblasting, wire brushing, or chemical cleaning. After cleaning, a primer is applied to the rebars to promote adhesion and corrosion resistance. The rebars are then left to dry before the final coating of paint is applied. This final coat can be either a solvent-based or water-based paint, depending on the desired finish and environmental considerations. The rebars are left to dry and cure, and once the paint is fully dried, they are ready to be used in construction projects.
Q:How are steel rebars handled and installed in congested reinforcement areas?
In congested reinforcement areas, steel rebars are typically handled and installed using specialized tools and techniques. Construction workers often use lifting devices or cranes to move the rebars into position, taking care to avoid damaging surrounding structures or other reinforcement elements. In tight spaces, rebars may be manually maneuvered and adjusted using hooks or other tools, ensuring proper alignment and spacing as per design specifications. Additionally, the rebars may be tied together with wire or welded to form a stable reinforcement structure. The process requires skilled workers who are experienced in working with rebars in congested areas to ensure accurate and safe installation.
Q:What is the lifespan of a steel rebar in a concrete structure?
The lifespan of a steel rebar in a concrete structure can vary depending on various factors. Generally, a properly designed and constructed concrete structure with steel reinforcement can have a lifespan of 50 to 100 years or more. One crucial factor influencing the lifespan is the quality of the concrete and its ability to protect the steel reinforcement from external elements. Concrete acts as a barrier, shielding the steel rebar from moisture, oxygen, and other potentially corrosive substances. However, if the concrete is of poor quality, contains excessive amounts of chloride or other aggressive chemicals, or is not properly cured, it can lead to the deterioration of the rebar and significantly reduce its lifespan. Another important factor is the exposure conditions to which the concrete structure is subjected. If the structure is located in a harsh environment with high levels of humidity, saltwater exposure, or industrial pollutants, it can accelerate the corrosion process and decrease the lifespan of the rebar. Proper maintenance and periodic inspection can also play a significant role in extending the lifespan of the steel rebar in a concrete structure. Regular inspections can help identify any signs of corrosion or deterioration early on, allowing for timely repairs or protective measures to be implemented. To enhance the lifespan of steel rebar, additional protective measures can be taken during construction, such as applying corrosion-resistant coatings or using stainless steel reinforcement. These measures can significantly extend the lifespan of the rebar and enhance the overall durability of the concrete structure. In summary, the lifespan of a steel rebar in a concrete structure can vary but can typically range from 50 to 100 years or more, provided that the concrete is of good quality, the exposure conditions are not too severe, and proper maintenance and protective measures are implemented.
Q:What is the maximum spacing allowed between vertical steel rebars in columns?
The maximum spacing allowed between vertical steel rebars in columns depends on various factors such as the column size, design requirements, and local building codes. However, a common guideline is to keep the spacing between rebars equal to or less than three times the column diameter or width.
Q:How are steel rebars protected during the concrete pouring process?
To ensure the longevity and structural integrity of steel rebars during the concrete pouring process, several protective measures are implemented. Initially, prior to pouring the concrete, the rebars undergo meticulous cleaning to eliminate any rust, dirt, or contaminants that may compromise the bond between the rebar and the concrete. This is typically achieved by utilizing a wire brush or other mechanical methods. Once the rebars have been thoroughly cleaned, a common practice is to apply a protective layer or coating to them. An epoxy coating is frequently employed for this purpose. The coating acts as a barrier, preventing moisture and chemicals from reaching the steel and causing corrosion. Epoxy coatings are especially valuable in high-risk environments like marine structures or areas with a high chloride content. Another protective method involves the use of corrosion inhibitors. These inhibitors are added to the concrete mixture, which subsequently forms a protective layer around the rebars. By reducing the corrosive effects of chloride ions, oxygen, and other chemicals, the inhibitors work to prevent corrosion. Additionally, it is crucial to ensure adequate concrete cover over the rebars during the pouring process. Concrete cover refers to the thickness of the concrete layer between the surface and the rebar. Sufficient concrete cover safeguards the rebars against exposure to moisture, chemicals, and other environmental factors. To achieve the desired concrete cover, steel stirrups or spacers are positioned around the rebars to maintain a specific distance between the rebar and the formwork. This guarantees even distribution of the concrete around the rebars, providing them with the necessary protection. In conclusion, steel rebars are shielded during the concrete pouring process through various methods, including thorough cleaning, the application of protective coatings, the use of corrosion inhibitors, and the maintenance of proper concrete cover. These measures effectively prevent corrosion and ensure the durability and strength of the reinforced concrete structure.
Q:What is the resistance of steel rebars against acid attacks?
Steel rebars have a high resistance against acid attacks due to the protective layer of rust that forms on their surface. This layer, known as iron oxide, acts as a barrier between the steel and the acid, preventing direct contact and corrosion. Additionally, the high carbon content in steel rebars enhances their resistance to acid attacks, as carbon forms a protective film that further shields the steel from acid damage. However, it is important to note that prolonged exposure to highly concentrated or corrosive acids may still lead to some degree of corrosion, albeit at a slower rate compared to other metals. Therefore, it is advisable to select the appropriate grade of steel rebar and provide additional protective measures, such as coatings or concrete cover, to ensure optimal resistance against acid attacks in specific applications.
Q:How are steel rebars specified in construction drawings?
In construction drawings, steel rebars are specified using a combination of symbols, labels, and dimensions. These specifications provide detailed information about the size, shape, and placement of the rebars within the concrete structure. The specifications for steel rebars typically include the following information: 1. Rebar Size: The diameter of the rebar is specified using a numerical value, such as 8, 10, 12, etc., which indicates the bar size in millimeters or inches. 2. Rebar Shape: The shape of the rebar can be specified using symbols or abbreviations, such as "D" for deformed or "SD" for smooth and deformed. 3. Rebar Spacing: The spacing between rebars is typically specified using a numerical value, such as 150, 200, or 300, which indicates the distance between the centerlines of adjacent rebars in millimeters or inches. 4. Rebar Bending: If rebars need to be bent to a specific shape, the bending details are often included in the construction drawings. This includes the angle and radius of the bend, as well as the location at which the bending is required. 5. Rebar Placement: Construction drawings typically include plans, sections, and elevations that show the precise location and arrangement of the rebars within the concrete structure. These drawings may include details such as the number of rebars, their orientation, and their position relative to other elements of the structure. 6. Rebar Schedule: A rebar schedule is often provided in construction drawings, which summarizes all the specifications for each rebar element in a tabular format. This includes information such as the rebar mark, size, length, weight, and any special instructions. Overall, the specifications for steel rebars in construction drawings ensure that the rebars are correctly fabricated, installed, and integrated into the concrete structure, meeting the design requirements and ensuring the structural integrity and safety of the building.
Q:What is the lifespan of steel rebars in different environments?
The lifespan of steel rebars can vary depending on the environment they are exposed to. In general, steel rebars have a long lifespan and can last for many decades in most environments. However, in harsh or corrosive environments such as coastal areas with high salt content or industrial areas with chemical exposure, the lifespan may be reduced. Proper maintenance and protective measures, such as coatings or cathodic protection, can significantly increase the lifespan of steel rebars in these environments.
Q:What are the guidelines for the proper spacing of steel rebars in slabs-on-grade?
To ensure the structural integrity and longevity of the concrete slab, it is crucial to follow guidelines for spacing steel rebars in slabs-on-grade. Here are the general guidelines to be followed: 1. Concrete cover: The first consideration is the distance between the rebar surface and the concrete edge, known as the concrete cover. Local building codes or engineering standards typically specify the minimum cover requirements, which must be strictly adhered to. This cover protects the rebar from corrosion and provides fire resistance. 2. Rebar spacing: The spacing between rebars depends on the load requirements and slab dimensions. A closer spacing results in a stronger slab. However, it is necessary to maintain proper spacing to allow free flow of concrete around the rebar during pouring and ensure proper consolidation. Generally, the spacing should not exceed three times the slab thickness or 18 inches, whichever is smaller. 3. Rebar size and diameter: The selection of rebar size and diameter depends on the load requirements and design specifications. Larger loads require larger diameter rebars with increased spacing. Common rebar sizes for slabs-on-grade range from #3 (3/8 inch diameter) to #8 (1 inch diameter). 4. Rebar placement: Proper placement of rebars within the slab is critical. The rebars should be positioned at the center of the slab's thickness to ensure even load distribution. Moreover, they should be securely tied or supported to prevent displacement during concrete placement and consolidation. 5. Joint reinforcement: Construction joints are often included in slabs-on-grade to accommodate expansion and contraction. Proper reinforcement of these joints is essential for maintaining structural integrity. Joint reinforcement, such as dowel bars or tie bars, should be placed perpendicular to the joint and adequately anchored on both sides. It is important to note that these guidelines provide a general overview, and specific project requirements may vary. Consulting a structural engineer or following local building codes and industry standards is essential to ensure compliance and optimize the design of steel rebars in slabs-on-grade.

1. Manufacturer Overview

Location
Year Established
Annual Output Value
Main Markets
Company Certifications

2. Manufacturer Certificates

a) Certification Name  
Range  
Reference  
Validity Period  

3. Manufacturer Capability

a)Trade Capacity  
Nearest Port
Export Percentage
No.of Employees in Trade Department
Language Spoken:
b)Factory Information  
Factory Size:
No. of Production Lines
Contract Manufacturing
Product Price Range

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

New products

Hot products


Hot Searches

Related keywords