• Grid-tied solar  PV inverter  4000TLM High-yield Low Maintenance Cost System 1
Grid-tied solar  PV inverter  4000TLM High-yield Low Maintenance Cost

Grid-tied solar PV inverter 4000TLM High-yield Low Maintenance Cost

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT or LC
Min Order Qty:
10 unit
Supply Capability:
10000 unit/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

High-yield

Max 97.6%efficiency

Real timeprecise MPPT algorithm for max harvest

Wide inputvoltage operation range from 100V to 550V

Two MPPtrackers for flexible PV panel configuration

Low maintenance cost

Rust-freealuminumcovers

Flexiblemonitoring solution

Multifunctionrelay can be configured to show various inverter information


All in one. Flexible and economicalsystem solution

Free siteselection due to IP65

Easy installationand maintenance due to “Plug & Play” connection

Interfaceselection-Wi-Fi/RS485/DryRelay for more flexible configuration and system monitoring

4” LCDdisplay

Intelligent grid management

Reactivepoweradjustable

Self powerreducerwhenover frequency

Remoteactive/reactivepower limit control



Technical Data

SOFAR

3000TLM

SOFAR

3680TLM

SOFAR

4000TLM

SOFAR

4600TLM

SOFAR

5000TLM

Input (DC)

Max. Input Power

3100W

3800W

4160W

4800W

5200W

Max. DC power for single MPPT

2000

(200V-500V)

2400

(200V-500V)

2600

(200V-500V)

3000

(200V-500V)

Number of independent MPPT

2

Number of DC inputs

1 for each MPPT

Max. Input Voltage

600V

Start-up input voltage

100V(+/-5V)

Rated input voltage

360V

Operating input voltage range

100V-550V

MPPT voltage range

160V-500V

165V-500V

175V-500V

Max. Input current per MPPT

10A/10A

12A/12A

13A/13A

15A/15A

Input short circuit current per MPPT

12A

14A

16A

18A

Output(AC)

Rated power(@230V,50Hz)

3000VA

3680VA

4000VA

4600VA

5000VA

Max. AC power

3000VA

3680VA

4000VA

4600VA

5000VA

Nominal AC voltage

L/N/PE, 220, 230, 240

Nominal AC voltage range

180V-270V

Grid frequency range

44~55Hz / 54~66Hz

Active power adjustable range

0~100%

Max. Output Current

13A

16A

17.5A

20A

22A

THDi

<3%

Power Factor

1(Adjustable +/-0.8)

Performance

Max efficiency

97.6%

Weighted eff.(EU/CEC)

97.1%/97.3%

Self-consumption at night

<1W

Feed-in start power

20W

MPPT efficiency

>99.5%

Protection

DC reverse polarity protection

Yes

DC switch

Optional

Protection class / overvoltage category

I/III

Input/output SPD(II)

Optional

Safety Protection

Anti-islanding, RCMU, Ground fault  monitoring

Certification

CE, CGC, AS4777, AS3100, VDE 4105,  C10-C11, G83/G59 (more available on request)

Communication

Power management unit

According to certification and request

Standard Communication Mode

Wifi+RS485

Operation Data Storage

25 years

General data

Ambient temperature range

-25℃ ~ +60℃

Topology

Transformerless

Degree of protection

IP65

Allowable relative humidity range

0 ~ 95% no condensing

Max. Operating Altitude

2000m

Noise

<25dB

Weight

18kg

Cooling

Nature

Dimension

344×478×165mm

Warranty

5 years

Certification

CNBM Solar strictly carries out the ISO 9001 quality control methodology and has implemented check points at every step of the production process to ensure our product performance durability and safety. The stringent quality control process has been confirmed by numerous independent agencies and LDK Solar modules earned IEC, TUV and UL certifications.

·         IEC:IEC 61215, IEC 61730 (1&2), conformity to CE

·         UL 1703 2002/03/15 Ed:3 Rev:2004/06/30

·         ULC/ORD-C1703-01 Second Edition 2001/01/01

·         UL and Canadian Standard for Safety Flat-Plate

·         ISO 9001: 2008 Quality Management Systems

·         CEC Listed: Modules are eligible for California Rebates

·         PV Cycle: Voluntary module take back and recycling program

·         MCS Certificate

 

 

 FAQ

 1.   How do I decide which system is right for me ?

For protection from long outages, include a generator or solar panels in your Must solar system. Shorter outages can be handled by a battery-only system.

2.    Where my system will be installed ?

Must solar systems are usually wall-mounted near a home's main electrical (circuit breaker) panel.

3. How do I install my system ?

A solar backup inverter is connected to a home electric system , we will supply detailed installation manual and videos for our customers .

Q: Can a solar inverter be used in systems with different module capacities?
Yes, a solar inverter can be used in systems with different module capacities. Solar inverters are designed to convert the DC power generated by solar panels into AC power that can be used in homes or businesses. They are typically designed to handle a range of module capacities and can be adjusted or configured to accommodate different system sizes. However, it is important to ensure that the inverter's capacity is compatible with the total capacity of the solar panels in the system to ensure optimal performance.
Q: What is the role of a power optimizer in a solar inverter?
The role of a power optimizer in a solar inverter is to maximize the energy output from each individual solar panel by optimizing the voltage and current levels. It ensures that even if one panel is shaded or underperforming, it does not affect the overall system performance. Power optimizers also provide real-time monitoring and diagnostics, allowing for better system maintenance and performance tracking.
Q: Can a solar inverter be used in systems with different module efficiencies?
Yes, a solar inverter can be used in systems with different module efficiencies. Solar inverters are designed to convert the DC power generated by solar panels into AC power, regardless of the module efficiency. The inverter's main function is to optimize the power conversion process and ensure compatibility between the solar panels and the electrical grid. As a result, it can accommodate varying module efficiencies and still function efficiently.
Q: Can a solar inverter be used in a commercial solar system?
Yes, a solar inverter can be used in a commercial solar system. In fact, it is an essential component as it converts the direct current (DC) generated by the solar panels into alternating current (AC) that can be used to power commercial buildings and equipment. The solar inverter ensures efficient and reliable energy conversion, making it suitable for both residential and commercial solar installations.
Q: How does a solar inverter contribute to reducing carbon emissions?
A solar inverter plays a crucial role in reducing carbon emissions by converting the direct current (DC) electricity generated by solar panels into alternating current (AC) electricity that can be used to power homes and businesses. By enabling the integration of solar power into the electrical grid, solar inverters help to replace conventional fossil fuel-based electricity generation, which is a major source of carbon emissions. This shift towards clean and renewable solar energy helps to reduce carbon emissions and mitigate the adverse effects of climate change.
Q: Can a solar inverter be used in remote locations?
Yes, a solar inverter can be used in remote locations. Solar inverters are designed to convert the DC power generated by solar panels into AC power that can be used to power electrical devices. They can be used in off-grid or remote locations where access to a traditional power grid is not available.
Q: What are the main components of a solar inverter?
The main components of a solar inverter include the converter, control circuitry, filters, and the inverter output. The converter converts the direct current (DC) power generated by solar panels into alternating current (AC) power. The control circuitry regulates and manages the power conversion process. Filters ensure the output power is clean and free from any noise or interference. The inverter output delivers the AC power to the electrical grid or to power the connected devices.
Q: Can a solar inverter be installed indoors?
Yes, a solar inverter can be installed indoors.
Q: What is the lifespan of a solar inverter?
The lifespan of a solar inverter typically ranges from 10 to 15 years, depending on various factors such as the quality of the inverter, proper maintenance, and operating conditions.
Q: What are the advantages of using a transformerless solar inverter?
One advantage of using a transformerless solar inverter is its higher efficiency. By eliminating the need for a bulky and heavy transformer, the inverter can convert the DC power from the solar panels to AC power more efficiently. This results in less energy loss during the conversion process, leading to higher overall system efficiency and increased energy generation. Additionally, transformerless inverters tend to be smaller and lighter, making them easier to install and maintain.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords