• Solar Inverter With Battery Charger - Grid Tie Solar Inverters 10000TL All In One Low Maintenance Cost System 1
  • Solar Inverter With Battery Charger - Grid Tie Solar Inverters 10000TL All In One Low Maintenance Cost System 2
  • Solar Inverter With Battery Charger - Grid Tie Solar Inverters 10000TL All In One Low Maintenance Cost System 3
  • Solar Inverter With Battery Charger - Grid Tie Solar Inverters 10000TL All In One Low Maintenance Cost System 4
Solar Inverter With Battery Charger - Grid Tie Solar Inverters 10000TL All In One Low Maintenance Cost

Solar Inverter With Battery Charger - Grid Tie Solar Inverters 10000TL All In One Low Maintenance Cost

Ref Price:
get latest price
Loading Port:
Shanghai
Payment Terms:
TT or LC
Min Order Qty:
10 unit
Supply Capability:
10000 unit/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

High-yield

·Max98.2% efficiency

·Realtime precise MPPT algorithm for max harvest

·Wideinput voltage operation range from 250V to 960V

Allin one. Flexible and economical system solution

·DCswitch(option)

·DCsurge protection device(option)

·ACsurge protection device(option)

·Built-inPV Combiner(option)

·Powermanagement unit

·Optimumselection for big PV plants, commercial buildings...

Lowmaintenance cost

·Detachablecover for easy installation

·Rust-freealuminum covers

·Flexiblemonitoring solution

·Multifunction relay can be configured to show various inverter information

Intelligentgrid management

·LVRTsupport

·Reactivepower adjustable

·Selfpower reducer whenover frequency

·Remoteactive/reactive power limit control



Technical  Data

SOFAR 10000TL

SOFAR 15000TL

SOFAR 17000TL

SOFAR 20000TL

Input  (DC)

Max.  Input Power

10400W

15600W

17700W

20800W

Max. DC  power for single MPPT

6750(450V-850V)

10500(500V-850V)

10500(500V-850V)

12000(500V-850V)

Number of  independent MPPT

2

Number  of DC inputs

2 for each  MPPT

3 for  each MPPT

Max.  Input Voltage

1000V

Start-up  input voltage

350V(+/-1V)

Rated  input voltage

600V

Operating  input voltage range

250V-960V

MPPT  voltage range

350V-850V

370V-850V

420V-850V

430V-850V

Max.  Input current per MPPT

15A/15A

21A/21A

21A/21A

24A/24A

Input  short circuit current per MPPT

20A

27A

27A

30A

Output(AC)

Rated  power(@230V,50Hz)

10000VA

15000VA

17000VA

20000VA

Max. AC  power

10000VA

15000VA

17000VA

20000VA

Nominal  AC voltage

3/N/PE,  220/380

3/N/PE,  230/400

3/N/03,  240/415

Nominal  AC voltage range

184V-276V

Grid  frequency range

50Hz,  +/-5Hz

Active  power adjustable range

0~100%

Max.  Output Current

15A

22A

25A

29A

THDi

<3%

Power  Factor

1(Adjustable  +/-0.8)

Performance

Max  efficiency

98.2%

Weighted  eff.(EU/CEC)

97.6%/97.8%

97.9%/98%

97.9%/98%

98%/98.1%

Self-consumption  at night

<1W

Feed-in  start power

45W

MPPT  efficiency

>99.5%

Protection

DC  reverse polarity protection

Yes

DC  switch

Optional

Protection  class/overvoltage category

I/III

Input/output  SPD(II)

Optional

Safety  Protection

Anti-islanding,  RCMU, Ground fault monitoring

Certification

CE, CGC,  AS4777, AS3100, VDE 4105, C10-C11, G59(more available on request)

Communication

Power  management unit

According  to certification and request

Standard  Communication Mode

RS485,  Wifi(optional), Multi-function relay

Operation  Data Storage

25 years

General  data

Ambient  temperature range

-25℃ ~ +60℃

Topology

Transformerless

Degree  of protection

IP65

Allowable  relative humidity range

0 ~ 95%  no condensing

Max.  Operating Altitude

2000m

Noise

<45dB

Weight

45kg

45kg

48kg

48kg

Cooling

Nature

Fan

Fan

Fan

Dimension

707×492×240mm

Warranty

5 years


 

 

Certification

CNBM Solar strictly carries out the ISO 9001 quality control methodology and has implemented check points at every step of the production process to ensure our product performance durability and safety. The stringent quality control process has been confirmed by numerous independent agencies and LDK Solar modules earned IEC, TUV and UL certifications.

·         IEC:IEC 61215, IEC 61730 (1&2), conformity to CE

·         UL 1703 2002/03/15 Ed:3 Rev:2004/06/30

·         ULC/ORD-C1703-01 Second Edition 2001/01/01

·         UL and Canadian Standard for Safety Flat-Plate

·         ISO 9001: 2008 Quality Management Systems

·         CEC Listed: Modules are eligible for California Rebates

·         PV Cycle: Voluntary module take back and recycling program

·         MCS Certificate

 

Warranty

provides a 13 year limited warranty (“Warranty”) against defects in materials and workmanship for its Uninterruptible power supply, Power inverter/chargers, Solar charge controllers, Battery Products (“Product”).

The term of this Warranty begins on the Product(s) initial purchase date, or the date of receipt of the Product(s) by the end user, whichever is later. This must be indicated on the invoice, bill of sale, and/or warranty registration card submitted to us. This Warranty applies to the original MUST-Solar Product purchaser, and is transferable only if the Product remains installed in the original use location.

 

 

FAQ

  1. How fast will my system respond to a power outage?

Our solar inverters typically transfer to battery power in less than 16 milliseconds (less than 1/50th of a second).

  1. What kind of batteries do the systems include?

Our solar backup electric systems use special high-quality electric storage batteries.

  1. How do I install my system?

A solar backup inverter is connected to a home electric system , we will supply detailed installation manual and videos for our customers .

Q: How does a solar inverter handle power quality disturbances?
A solar inverter handles power quality disturbances by continuously monitoring the electrical grid and adjusting its output accordingly. It employs various techniques such as voltage regulation, frequency control, and power factor correction to ensure that the power it feeds into the grid is of high quality and meets the required standards. Additionally, some advanced solar inverters also have built-in features like anti-islanding protection to prevent the injection of power into the grid during a disturbance, ensuring the safety of both the solar system and the grid.
Q: What is the role of a power optimizer in a solar inverter?
The role of a power optimizer in a solar inverter is to maximize the energy output from each individual solar panel by optimizing the voltage and current levels. It ensures that even if one panel is shaded or underperforming, it does not affect the overall system performance. Power optimizers also provide real-time monitoring and diagnostics, allowing for better system maintenance and performance tracking.
Q: Can a solar inverter convert DC power to AC power during a power outage?
No, a solar inverter cannot convert DC power to AC power during a power outage. During a power outage, the solar inverter relies on the grid to function, and without grid power, it cannot convert DC power from the solar panels into usable AC power.
Q: How does a solar inverter handle voltage drop in long cable runs?
A solar inverter compensates for voltage drop in long cable runs by boosting the voltage to ensure efficient power transmission.
Q: What is the role of a solar inverter in a net metering system?
The role of a solar inverter in a net metering system is to convert the direct current (DC) electricity generated by solar panels into alternating current (AC) electricity that can be used by the grid or consumed in the building. It also ensures that any excess electricity produced by the solar panels is fed back into the grid, allowing the system owner to receive credits or compensation for the surplus energy.
Q: What is the role of a solar inverter in voltage and frequency regulation during grid disturbances?
Maintaining the stability and reliability of the electrical grid heavily depends on the crucial role of a solar inverter in voltage and frequency regulation during grid disturbances. To regulate and stabilize the electrical parameters, the solar inverter acts as a control device during grid disturbances like voltage fluctuations or frequency deviations. Regarding voltage regulation, the solar inverter constantly monitors the grid's voltage level and adjusts its output accordingly. It decreases its output if the grid voltage increases to avoid overvoltage conditions. Conversely, if the grid voltage decreases, the inverter increases its output to compensate and maintain a stable voltage level. This regulation guarantees that the solar inverter's voltage aligns with the grid's requirements, preventing harm to electrical equipment and ensuring the grid's safe operation. Similarly, the solar inverter also contributes to frequency regulation during grid disturbances. It continuously monitors the grid's frequency and adjusts its output frequency to match it. If the grid frequency deviates from the standard frequency, the inverter modifies its output frequency to bring it back to the desired level. This frequency regulation is vital to keep various electrical devices connected to the grid synchronized, preventing equipment damage, and ensuring the grid's stability. In summary, the solar inverter's role in voltage and frequency regulation during grid disturbances is to provide stability and reliability to the electrical grid. It acts as a control device that constantly monitors and adjusts its output to maintain the desired voltage and frequency levels. This ensures the prevention of potential damage to electrical equipment and guarantees the smooth operation of the grid.
Q: Can a solar inverter be used for off-grid applications?
Yes, a solar inverter can be used for off-grid applications. Off-grid systems typically rely on solar panels to generate electricity, and a solar inverter is essential in converting the direct current (DC) generated by the panels into alternating current (AC) which can be used to power various appliances and devices. The inverter also manages the flow of electricity, ensures system stability, and may include features like battery charging and energy storage capabilities, making it suitable for off-grid applications where no grid connection is available.
Q: Can a solar inverter be used with solar-powered water purification systems?
Yes, a solar inverter can be used with solar-powered water purification systems. A solar inverter is responsible for converting the direct current (DC) produced by solar panels into alternating current (AC) for powering electrical devices. In the case of solar-powered water purification systems, the solar panels generate electricity, which is then converted by the inverter to power the system's pumps, filters, and other components required for water purification.
Q: How does a solar inverter communicate with monitoring systems?
A solar inverter communicates with monitoring systems through various communication protocols such as Wi-Fi, Ethernet, or cellular networks. These protocols allow the inverter to send real-time data regarding the system's performance, including power output, voltage, and current, to the monitoring system. This data is then analyzed and displayed on a monitoring platform or app, providing insights into the solar system's overall efficiency, energy production, and any potential issues or faults.
Q: What is the role of a solar inverter in anti-islanding protection?
The role of a solar inverter in anti-islanding protection is to detect when there is a loss of utility power and to disconnect the solar system from the grid. This is important to prevent the system from continuing to generate power during a power outage, which could pose a safety risk to utility workers who may be working on the grid. The solar inverter ensures that the solar system is synchronized with the grid and only operates when there is a stable utility power supply, thus providing a reliable and safe connection to the grid.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords