• Sunpower Solar Inverter 3000w Grid-Tied Solar PV Inverter 3000TLM System 1
  • Sunpower Solar Inverter 3000w Grid-Tied Solar PV Inverter 3000TLM System 2
  • Sunpower Solar Inverter 3000w Grid-Tied Solar PV Inverter 3000TLM System 3
Sunpower Solar Inverter 3000w Grid-Tied Solar PV Inverter 3000TLM

Sunpower Solar Inverter 3000w Grid-Tied Solar PV Inverter 3000TLM

Ref Price:
get latest price
Loading Port:
Shekou
Payment Terms:
TT or LC
Min Order Qty:
10 unit
Supply Capability:
99999 unit/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

3000W Grid-tied Solar PV Inverter 3000TLM

 

High-yield

Max 97.6%efficiency

Real timeprecise MPPT algorithm for max harvest

Wide inputvoltage operation range from 100V to 550V

Two MPPtrackers for flexible PV panel configuration

 

3000W Grid-tied Solar Inverter Low maintenance cost

Rust-freealuminumcovers

Flexiblemonitoring solution

Multifunctionrelay can be configured to show various inverter information

 

3000W Grid-tied Solar Inverter Flexible and economicalsystem solution

Free siteselection due to IP65

Easy installationand maintenance due to “Plug & Play” connection

Interfaceselection-Wi-Fi/RS485/DryRelay for more flexible configuration and system monitoring

4” LCDdisplay

 

3000W Grid-tied Solar Inverter Intelligent grid management

Reactivepoweradjustable

Self powerreducerwhenover frequency

Remoteactive/reactivepower limit control

 

3000W Grid-tied Solar Inverter Datasheet

Technical Data

SOFAR

3000TLM

SOFAR

3680TLM

SOFAR

4000TLM

SOFAR

4600TLM

SOFAR

5000TLM

Input (DC)

Max. Input Power

3100W

3800W

4160W

4800W

5200W

Max. DC power for single MPPT

2000

(200V-500V)

2400

(200V-500V)

2600

(200V-500V)

3000

(200V-500V)

Number of independent MPPT

2

Number of DC inputs

1 for each MPPT

Max. Input Voltage

600V

Start-up input voltage

100V(+/-5V)

Rated input voltage

360V

Operating input voltage range

100V-550V

MPPT voltage range

160V-500V

165V-500V

175V-500V

Max. Input current per MPPT

10A/10A

12A/12A

13A/13A

15A/15A

Input short circuit current per MPPT

12A

14A

16A

18A

Output(AC)

Rated power(@230V,50Hz)

3000VA

3680VA

4000VA

4600VA

5000VA

Max. AC power

3000VA

3680VA

4000VA

4600VA

5000VA

Nominal AC voltage

L/N/PE, 220, 230, 240

Nominal AC voltage range

180V-270V

Grid frequency range

44~55Hz / 54~66Hz

Active power adjustable range

0~100%

Max. Output Current

13A

16A

17.5A

20A

22A

THDi

<3%

Power Factor

1(Adjustable +/-0.8)

Performance

Max efficiency

97.6%

Weighted eff.(EU/CEC)

97.1%/97.3%

Self-consumption at night

<1W

Feed-in start power

20W

MPPT efficiency

>99.5%

Protection

DC reverse polarity protection

Yes

DC switch

Optional

Protection class / overvoltage category

I/III

Input/output SPD(II)

Optional

Safety Protection

Anti-islanding, RCMU, Ground fault  monitoring

Certification

CE, CGC, AS4777, AS3100, VDE 4105,  C10-C11, G83/G59 (more available on request)

Communication

Power management unit

According to certification and request

Standard Communication Mode

Wifi+RS485

Operation Data Storage

25 years

General data

Ambient temperature range

-25℃ ~ +60℃

Topology

Transformerless

Degree of protection

IP65

Allowable relative humidity range

0 ~ 95% no condensing

Max. Operating Altitude

2000m

Noise

<25dB

Weight

18kg

Cooling

Nature

Dimension

344×478×165mm

Warranty

5 years

 

 

 

 

 

Q: How does a solar inverter handle power surges or fluctuations?
A solar inverter handles power surges or fluctuations by using advanced circuitry and protective measures. It typically includes surge protection devices that can absorb excessive voltage spikes, diverting them away from the system. Additionally, the inverter continuously monitors the grid voltage and adjusts its own output accordingly to maintain a stable and safe supply of electricity.
Q: What is the role of anti-islanding protection in a solar inverter?
The role of anti-islanding protection in a solar inverter is to ensure the safety of electrical grid workers by preventing the solar inverter from energizing the grid during a power outage. It is designed to detect grid failures and immediately disconnect the solar system from the grid, avoiding a potentially dangerous situation known as islanding. This protection feature helps maintain the stability and integrity of the electrical grid and protects both the grid workers and the solar system itself.
Q: How does a solar inverter handle voltage and frequency variations caused by grid faults?
A solar inverter is designed to handle voltage and frequency variations caused by grid faults through a process known as grid support or anti-islanding function. When a grid fault occurs, such as a sudden drop in voltage or frequency, the solar inverter detects the disturbance and responds accordingly. To handle voltage variations, the solar inverter typically incorporates a voltage control mechanism. It monitors the grid voltage continuously and adjusts its own output voltage to match the grid voltage level. In the event of a voltage drop or spike caused by a grid fault, the inverter adjusts its output voltage accordingly to maintain a stable and safe operating condition. This helps protect both the solar system and the grid from potential damage. Similarly, the solar inverter also deals with frequency variations caused by grid faults. It constantly monitors the grid frequency and adjusts its own output frequency to match the grid frequency. If a grid fault results in a sudden change in frequency, the inverter responds by adjusting its own frequency accordingly. This ensures that the solar system remains synchronized with the grid and continues to supply power without disruptions. Additionally, solar inverters are equipped with anti-islanding protection, which means they are designed to quickly disconnect from the grid in the event of a grid fault. This is a safety measure to prevent the solar system from continuing to supply power to a faulty grid, which could pose a risk to utility workers trying to repair the fault. Overall, a solar inverter's ability to handle voltage and frequency variations caused by grid faults is crucial for the safe and efficient operation of a solar power system. By continuously monitoring the grid conditions and adjusting its output accordingly, the inverter ensures that the solar system remains in sync with the grid and provides stable and reliable power.
Q: Can a solar inverter be used with concentrated solar power systems?
Yes, a solar inverter can be used with concentrated solar power systems. Concentrated solar power (CSP) systems use mirrors or lenses to concentrate sunlight onto a receiver, which then converts the sunlight into heat. This heat can then be used to generate electricity through various means, including steam turbines. In order to convert this heat-generated electricity into the required alternating current (AC) for use in homes and businesses, a solar inverter is needed. Therefore, a solar inverter is an essential component in connecting and integrating the electricity generated by concentrated solar power systems into the power grid.
Q: What is the role of a reactive power controller in a solar inverter?
The role of a reactive power controller in a solar inverter is to regulate and maintain the power factor of the inverter output. It ensures that the reactive power generated by the solar panels is properly balanced with the active power, thereby optimizing the efficiency and stability of the solar power system.
Q: Grid-connected inverter is generally divided into photovoltaic power generation grid-connected inverter, wind power grid-connected inverter, power equipment and grid-connected inverter and other power generation equipment power generation inverter.
Grid-connected inverter is generally used with large-scale photovoltaic power plant system, a lot of parallel PV string is connected to the same set of inverter DC input, the general power of the use of three-phase IGBT power module, power
Q: How does the temperature affect the performance of a solar inverter?
The temperature can significantly affect the performance of a solar inverter. As the temperature increases, the efficiency of the inverter decreases. This is because the internal components of the inverter can overheat, leading to a decrease in power conversion efficiency. Additionally, high temperatures can also cause voltage drops and create thermal stress on the components, which can further impact the performance and longevity of the inverter. Therefore, it is crucial to consider temperature management and cooling mechanisms to ensure optimal performance and reliability of a solar inverter.
Q: Are there any specific installation requirements for solar inverters?
Yes, there are specific installation requirements for solar inverters. They need to be installed in a well-ventilated area, away from direct sunlight and extreme temperatures. Additionally, they should be mounted securely on a wall or a rack, with proper clearance for maintenance and airflow. The installation should follow electrical safety guidelines and be performed by a qualified professional.
Q: What is the role of a solar inverter in preventing electrical hazards?
The role of a solar inverter in preventing electrical hazards is to convert the direct current (DC) power generated by solar panels into alternating current (AC) power that can be used in homes and businesses. By regulating the voltage and frequency of the electricity, the inverter ensures that the power is safe and compatible with the electrical grid. Additionally, solar inverters have built-in safety features such as ground fault protection and rapid shutdown mechanisms, which help prevent electrical hazards such as fires, shocks, and damage to the system.
Q: What is the maximum power output of a solar inverter?
The maximum power output of a solar inverter depends on its capacity and specifications. It can range from a few hundred watts to several kilowatts for residential inverters, and even higher for commercial or utility-scale inverters.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords