• Sunpower Solar Inverter 3000w Grid-Tied Solar PV Inverter 3000TLM System 1
  • Sunpower Solar Inverter 3000w Grid-Tied Solar PV Inverter 3000TLM System 2
  • Sunpower Solar Inverter 3000w Grid-Tied Solar PV Inverter 3000TLM System 3
Sunpower Solar Inverter 3000w Grid-Tied Solar PV Inverter 3000TLM

Sunpower Solar Inverter 3000w Grid-Tied Solar PV Inverter 3000TLM

Ref Price:
get latest price
Loading Port:
Shekou
Payment Terms:
TT or LC
Min Order Qty:
10 unit
Supply Capability:
99999 unit/month

Add to My Favorites

Follow us:


OKorder Service Pledge

Quality Product, Order Online Tracking, Timely Delivery

OKorder Financial Service

Credit Rating, Credit Services, Credit Purchasing

3000W Grid-tied Solar PV Inverter 3000TLM

 

High-yield

Max 97.6%efficiency

Real timeprecise MPPT algorithm for max harvest

Wide inputvoltage operation range from 100V to 550V

Two MPPtrackers for flexible PV panel configuration

 

3000W Grid-tied Solar Inverter Low maintenance cost

Rust-freealuminumcovers

Flexiblemonitoring solution

Multifunctionrelay can be configured to show various inverter information

 

3000W Grid-tied Solar Inverter Flexible and economicalsystem solution

Free siteselection due to IP65

Easy installationand maintenance due to “Plug & Play” connection

Interfaceselection-Wi-Fi/RS485/DryRelay for more flexible configuration and system monitoring

4” LCDdisplay

 

3000W Grid-tied Solar Inverter Intelligent grid management

Reactivepoweradjustable

Self powerreducerwhenover frequency

Remoteactive/reactivepower limit control

 

3000W Grid-tied Solar Inverter Datasheet

Technical Data

SOFAR

3000TLM

SOFAR

3680TLM

SOFAR

4000TLM

SOFAR

4600TLM

SOFAR

5000TLM

Input (DC)

Max. Input Power

3100W

3800W

4160W

4800W

5200W

Max. DC power for single MPPT

2000

(200V-500V)

2400

(200V-500V)

2600

(200V-500V)

3000

(200V-500V)

Number of independent MPPT

2

Number of DC inputs

1 for each MPPT

Max. Input Voltage

600V

Start-up input voltage

100V(+/-5V)

Rated input voltage

360V

Operating input voltage range

100V-550V

MPPT voltage range

160V-500V

165V-500V

175V-500V

Max. Input current per MPPT

10A/10A

12A/12A

13A/13A

15A/15A

Input short circuit current per MPPT

12A

14A

16A

18A

Output(AC)

Rated power(@230V,50Hz)

3000VA

3680VA

4000VA

4600VA

5000VA

Max. AC power

3000VA

3680VA

4000VA

4600VA

5000VA

Nominal AC voltage

L/N/PE, 220, 230, 240

Nominal AC voltage range

180V-270V

Grid frequency range

44~55Hz / 54~66Hz

Active power adjustable range

0~100%

Max. Output Current

13A

16A

17.5A

20A

22A

THDi

<3%

Power Factor

1(Adjustable +/-0.8)

Performance

Max efficiency

97.6%

Weighted eff.(EU/CEC)

97.1%/97.3%

Self-consumption at night

<1W

Feed-in start power

20W

MPPT efficiency

>99.5%

Protection

DC reverse polarity protection

Yes

DC switch

Optional

Protection class / overvoltage category

I/III

Input/output SPD(II)

Optional

Safety Protection

Anti-islanding, RCMU, Ground fault  monitoring

Certification

CE, CGC, AS4777, AS3100, VDE 4105,  C10-C11, G83/G59 (more available on request)

Communication

Power management unit

According to certification and request

Standard Communication Mode

Wifi+RS485

Operation Data Storage

25 years

General data

Ambient temperature range

-25℃ ~ +60℃

Topology

Transformerless

Degree of protection

IP65

Allowable relative humidity range

0 ~ 95% no condensing

Max. Operating Altitude

2000m

Noise

<25dB

Weight

18kg

Cooling

Nature

Dimension

344×478×165mm

Warranty

5 years

 

 

 

 

 

Q: What is the expected lifespan of a solar inverter?
The expected lifespan of a solar inverter typically ranges between 10 to 20 years.
Q: What is the role of voltage regulation in a solar inverter?
The role of voltage regulation in a solar inverter is to ensure that the energy generated by the solar panels is converted and delivered to the electrical grid or used within a premises at a stable and appropriate voltage level. It helps to maintain the quality and consistency of the electricity output, protecting the connected devices and ensuring optimal performance of the solar power system.
Q: What is the efficiency loss of a solar inverter over time?
The efficiency loss of a solar inverter over time depends on various factors such as the quality of the inverter, maintenance practices, and environmental conditions. Generally, high-quality inverters experience a minimal efficiency loss, typically around 0.5% to 1% per year. However, if the inverter is poorly maintained or subject to harsh conditions, the efficiency loss could be higher. Regular maintenance and monitoring can help mitigate efficiency loss and ensure optimal performance.
Q: What is the efficiency rating of a solar inverter?
The efficiency rating of a solar inverter refers to the percentage of solar energy converted into usable electricity. It measures how effectively the inverter converts the direct current (DC) power generated by solar panels into alternating current (AC) power for use in homes and businesses. Higher efficiency ratings indicate that the inverter can convert a greater amount of solar energy, resulting in increased electricity production and cost savings.
Q: How does the total harmonic distortion affect the performance of a solar inverter?
Total harmonic distortion (THD) refers to the distortion in the waveform of an electrical signal caused by the presence of harmonics. In the case of a solar inverter, high levels of THD can negatively impact its performance. Excessive THD can lead to voltage and current waveform distortions, which can result in various issues such as reduced power quality, increased losses, and decreased efficiency of the solar inverter. These distortions can also affect the overall performance and lifespan of connected electrical devices, potentially leading to their malfunction or premature failure. Therefore, it is crucial to ensure that a solar inverter maintains low levels of THD to optimize its performance and minimize any adverse effects on the connected electrical systems.
Q: Can a solar inverter be used with a solar-powered telecommunications system?
Yes, a solar inverter can be used with a solar-powered telecommunications system. A solar inverter is essential in converting the direct current (DC) generated by solar panels into alternating current (AC) required for powering telecommunication equipment. This ensures efficient and reliable operation of the system by enabling the utilization of solar energy to power the telecommunications infrastructure.
Q: Can a solar inverter be used with a solar-powered heating system?
Yes, a solar inverter can be used with a solar-powered heating system. A solar inverter converts the DC power generated by solar panels into AC power that can be used for various applications, including heating systems. By connecting the solar inverter to the solar panels and the heating system, the generated solar power can be efficiently utilized to provide heat for the system.
Q: Can a solar inverter be used in systems with different module currents?
Yes, a solar inverter can be used in systems with different module currents. Solar inverters are designed to convert the DC power generated by solar panels (modules) into AC power that can be used by electrical devices. They are typically equipped with Maximum Power Point Tracking (MPPT) technology, which allows them to optimize the power output from the solar panels regardless of their current ratings. This means that solar inverters can efficiently handle systems with different module currents and ensure the maximum power generation from the solar panels.
Q: Can a solar inverter be used with a solar carport?
Yes, a solar inverter can be used with a solar carport. A solar inverter is responsible for converting the direct current (DC) produced by the solar panels into usable alternating current (AC) electricity. This AC electricity can then be used to power various devices or fed back into the grid. In the case of a solar carport, the solar panels installed on the carport structure generate DC electricity, which is converted by the solar inverter into AC electricity to charge electric vehicles or power other electrical systems in the carport.
Q: Are there any safety considerations when installing a solar inverter?
Yes, there are several safety considerations when installing a solar inverter. Firstly, it is important to ensure that the inverter is installed by a qualified professional who is familiar with local electrical codes and regulations. This helps to minimize the risk of electrical hazards and ensures a safe installation. Additionally, proper grounding and bonding should be implemented to protect against electrical shock and lightning strikes. Adequate ventilation and temperature management are also important to prevent overheating and potential fire hazards. Overall, following safety guidelines and employing professional installation services are crucial to ensure the safe and efficient operation of a solar inverter system.

Send your message to us

This is not what you are looking for? Post Buying Request

Similar products

Hot products


Hot Searches

Related keywords